期刊文献+

一类二阶奇异微分方程正解的存在唯一性 被引量:7

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR A CLASS OF SECOND ORDER SINGULAR DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 利用上下解方法、不动点理论研究奇异微分方程u″+f(t,u)=0,t∈(0,1)在边界条件αu(0)-βu′(0)=0,γu(1)+δu′(1)=0下C[0,1]正解和C^1[0,1]正解的存在性与唯一性.其中非线性项f(t,u)关于u是减的,仅满足较弱的要求. The existence of positive solutions for a class of singular boundary value problems is investigated. Furthermore, the sufficient condition for the existence and uniqueness of positive solution of the system in C[0, 1] and C1 [0, 1] is given respectively, by means of the method of lower and upper solution, and the fixed point theorem.
作者 赵增勤
出处 《系统科学与数学》 CSCD 北大核心 2008年第3期325-333,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10471075) 山东省自然科学基金(Y2006A04) 高教博士点专项科研基金(20050446001)资助课题.
关键词 奇异边值问题 正解 上下解 不动点定理. Singular boundary value problem, positive solution, lower and upper solution,fixed point theorem.
  • 相关文献

参考文献4

二级参考文献15

共引文献72

同被引文献50

  • 1Zheng Haiyan (Dept. of Math., College of Huangshan, Huangshan 245041, Anhui) Lu Shiping (College of Math. and Computer Science, Anhui Normal University, Wuhu 241000, Anhui).POSITIVE SOLUTIONS TO FOURTH ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN OPERATOR[J].Annals of Differential Equations,2009,25(1):105-113. 被引量:2
  • 2高岩,刘晨琛,刘永璋.一类奇异二阶边值问题的正解存在性[J].曲阜师范大学学报(自然科学版),2006,32(4):32-36. 被引量:2
  • 3赵增勤.二阶奇异超线性微分方程正解的存在性和不可比较性[J].应用数学学报,2006,29(5):921-932. 被引量:11
  • 4Jiang D, Liu H. Existence of positive solutions for second order Neumann boundary value problems [ J ]. J Math Res Exposit, 2000,20 : 360-364.
  • 5Agarwal R P, Hong Huei-Lin, Yeh Chen-Chih. The existence of positive solutions for the Sturm-Liouville boundary value problem [ J ]. Computers Math Applica, 1998,35 (9) : 89-96.
  • 6Avery R I, Henderson A C. Three symmetric positive solutions for a second-order boundary value problem [ J ]. Appl Math Lett, 2000,13 : 1-7.
  • 7Yao Q. Existence and iteration of n symmetric positive solutions for a singular two-point boundary value problem [ J ]. Comput Math Appl, 2004,47 : 1195-1200.
  • 8Kosmatov N. A symmetric solution of a multipoint boundary value problem at resonance[ J]. Abstr Appl Anal, 2006, 2006: 1- 11.
  • 9Sun Y. Existence and multiplicity of symmetric positive solutions for three-point boundary value problem[ J]. J Math Anal Appl,2007,329 : 998-1009.
  • 10Sun Y. Optimal existence criteria for symmetric positive solutions to a three-point boundary value problem [ J ]. Nonlinear Anal, 2007,66 : 1051-1063.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部