期刊文献+

Sn-Ni合金的电化学沉积法制备与性能 被引量:2

Preparation and properties of Sn-Ni alloy by electrochemical deposition
下载PDF
导出
摘要 利用直流电沉积法在铜箔上沉积了锂离子电池负极材料Sn-Ni合金,并对其结构和电化学性能进行了表征和分析。所得Sn-Ni合金材料的粒径在1~2mm之间,主要成分为Ni3Sn2和Sn。将电沉积有Sn-Ni合金的铜箔经过干燥、压片后直接作为锂离子电池负极,其首次可逆比容量达到516mAh/g,首次库仑转换效率在75%。而传统涂浆法制备的Sn-Ni合金电极,首次可逆比容量为416mAh/g,首次库仑转换效率仅为27.5%。与传统涂浆工艺相比,直流电沉积法直接获得的Sn-Ni合金负极首次循环的可逆容量、库仑效率都有明显优势,但循环性仍有待于进一步提高。 The anode material Sn-Ni alloy for Li-ion battery was deposited onto a copper foil by direct current electrodeposition. Its structure and electrochemical properties were characterized. It was indicated that the as-deposited alloy was composed of Ni3Sn2 and Sn with grain size in the order 1-2μm. The copper foil collector deposited Sn-Ni alloy was used as the anode directly in the U-ion battery after a step of dry and press treatment. The electrodeposited Sn-Ni alloy anode showed initial reversible specific capacity was 516 mAh/g and initial coulomb efficiency was 75%. Comparatively, .the slurry-coating anode from Sn-Ni alloy only gave the initial reversible specific capacity 416 mAh/g and initial coulomb efficiency 27.5%. It is visible that the initial reversible specific capacity and coulomb efficiency of the electrodeposited Sn-Ni alloy anode are higher than those of the slurry-coating anode from Sn-Ni alloy. For the electrodeposited Sn-Ni alloy anode in the Li-ion battery, it is needful to improve its cycle performance.
出处 《电源技术》 CAS CSCD 北大核心 2008年第3期161-164,共4页 Chinese Journal of Power Sources
基金 河南省杰出青年科学基金(0612002700)
关键词 电沉积 锂离子电池 锡镍合金负极 electrodeposition lithium ion battery Sn-Ni alloy anode
  • 相关文献

参考文献12

二级参考文献133

  • 1孙杨正,廖小珍,马紫峰.锂离子电池硅基负极材料研究进展[J].电池,2004,34(3):194-195. 被引量:10
  • 2蔡惠群 金明刚 董全峰 等.杂质对聚合物电池锂离子电池充电曲线影响的初步研究[A]..第25届中国化学与物理电源学术年会论文集[C].中国惠州,2002.11.C 107.
  • 3[1]LEE S J, LEE H Y, JEONG S H, et al. Performance of tin-containing thin-film anodes for rechargeable thin-film batteries[J].J Power Sources, 2002,111: 345-349.
  • 4[2]KIM D G, KIM H, SOHN H J, et al. Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries[J].J Power Sources, 2002,104: 221-225.
  • 5[3]LARCHER D,BEAULLEU L Y,MACNEIL D D, et al. In situ x-ray study of the electrochemical reaction of Li with η'-Cu6Sn5[J].J Electrochem Soc,2000,147 ( 5 ): 1 658-1 662.
  • 6[4]CROSNIER O, BROUSSE T, FRAGNAUD P, et al. New anode systems for lithium ion cells[J].J Power Sources, 2001,94: 169-174.
  • 7[5]KIM Y L, LEE H Y, JANG S W, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries[J].Solid State Ionics, 2003,160: 235-240.
  • 8[6]EHRLICH G M, DURAND C, CHEN X, et al. Metallic negative electrode materials for rechargeable nonaqueous batteries[J].J Electrochem Soc, 2000,147 ( 3 ): 886-891.
  • 9[7]MAO O,DAHN J R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries Ⅱ .The Sn-Fe system[J].J Electrochem Soc, 1999,146 ( 2 ) :414-422.
  • 10[8]MAO O, DUNLAP R A, DAHN J R. In situ Fe and Sn Mo ssbauer effect studies of the electrochemical reaction of lithium with mechanically alloyed SnFe[J].Solid State Ionics, 1999,118: 99-109.

共引文献53

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部