期刊文献+

一类含次线性项的非线性椭圆型方程的Nehari流形的性质 被引量:1

The Properties of the Nehari Manifold for the Nonlinear Elliptic Equation Involving a Sublinear Term
下载PDF
导出
摘要 研究了一类含次线性项的非线性椭圆型方程,运用该方程的某些性质和凹凸函数讨论了该方程的Nehari流形的一些性质. In this paper, we study the nonlinear elliptic equation involving a sublinear term. By using some properties of this equation and the concave-convex funtion, we discuss some properties of the Nehari manifold for this equation.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期127-130,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10726033) 四川省教育厅自然科学重点基金(2004C013)资助项目
关键词 次线性项 NEHARI流形 凹凸函数 Sublinear term Nehari manifold Concave-convex funtion
  • 相关文献

参考文献14

  • 1Brown K J, Zhang Y P. The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function[ J]. J Differential Equations ,2003,193:481-499.
  • 2Brown K J. The Nehari manifold for a semilinear elliptic equation[ J]. Calculus of Variations and Partial Differential Equations, 2005,22:483-494.
  • 3Hess P, Kato T. On some linear and nonlinear eigenvalue problems with an indefinite weight function [ J ]. Commun Partial Differential Equations, 1980,5:999-1030.
  • 4Drabek P, Kufner A, Nicolosi F, Quasilinear Elliptic Equations with Degenerations and Singularities [ M ]. New York : Walter deGruyter, 1997,
  • 5Ma L. Bifurcation in Nirenberg' s problem[J]. C R Aead Sei Paris, Ser 1,1998,326:583-588.
  • 6Bao J G. Positive solution for semilinear elliptic equation on general domain [ J ]. Nonlinear Analysis, 2003,53 : 1179-1191.
  • 7Wu Tsung-fang. On semilinear elliptic equations involving concave-convex nonlinearities and sign-changlng weight function [ J ]. J Math Anal Appl,2006 ,318 :253-270.
  • 8廖为,蒲志林.一类缺乏紧性的p-Laplacian方程非平凡弱解的存在性[J].四川师范大学学报(自然科学版),2006,29(1):26-29. 被引量:12
  • 9李惠,蒲志林,陈光淦.一类临界指数的非线性椭圆方程解的存在性[J].四川师范大学学报(自然科学版),2006,29(4):401-404. 被引量:4
  • 10陈顺清.一类p-Laplacian奇异初值问题正解的存在性[J].四川师范大学学报(自然科学版),2004,27(2):165-168. 被引量:8

二级参考文献59

  • 1饶若峰.一类含第一特征值具临界指数的半线性椭圆方程[J].西南师范大学学报(自然科学版),2004,29(4):549-552. 被引量:8
  • 2宋树枝,唐春雷.拟线性椭圆方程共振问题解的存在定理[J].西南师范大学学报(自然科学版),2005,30(1):1-6. 被引量:9
  • 3廖为,蒲志林.一类缺乏紧性的p-Laplacian方程非平凡弱解的存在性[J].四川师范大学学报(自然科学版),2006,29(1):26-29. 被引量:12
  • 4陈亚浙 吴兰成.二阶椭圆型方程与椭圆型方程组[M].北京:北京科学出版社,1997..
  • 5Costa D G,Magalhaesquad C A. A varivational approach to subquadratic perturbations of elliptic systems[J]. J Diff Eq,1994,111:103-122.
  • 6Yuan Lou. Necessary and sufficient conditions for the existence systems [J]. Nonl Anal TMA, 1996,26 (6): 1079-1095.
  • 7Zuluaga M A. Nonlinear elliptic system at resonance dynamic systems and applications[J]. 1994,3 (4): 501-510.
  • 8Schechter M. Nonlinear elliptic boundary value problems at resonance [J]. Nonlinear Analysis, 1990,14 (10):889-903.
  • 9Mario Zuluagaquad. Nonzero solutions of a nonlinear elliptic systemat resonance[J]. Nonl Anal TMA,1998,31(314):445-454.
  • 10Zhao Peihao,Zhou Wujie,Zhong Chengkui. The existence of three nontrivial solutions of a class of ellipitic systems[J]. Nonlinear Analysis, 2002,49 (3) : 431-443.

共引文献19

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部