期刊文献+

功能梯度材料涂层平面运动裂纹分析 被引量:2

Moving Crack Analysis in a Functionally Graded Coating under Plane Deformation
下载PDF
导出
摘要 研究粘结于均匀材料基底上功能梯度材料涂层平面运动裂纹问题,假设功能梯度材料剪切模量和密度为坐标的指数函数,而泊松比为常数。采用Fourier变换和传递矩阵法将该混合边值问题转化为一对奇异积分方程,通过数值求解奇异积分方程组获得功能梯度材料涂层平面运动裂纹的应力强度因子。考察了结构几何尺寸、裂纹运动速度以及材料梯度参数对运动裂纹的应力强度因子的影响,发现材料梯度参数、结构几何尺寸、裂纹长度以及运动速度均对功能梯度材料动态断裂行为有显著影响。 A finite crack with constant length propagating in a functionally graded coating with spatially varying elastic properties bonded to homogeneous material under in-plane loading was studied. By utilizing Fourier transformation technique, the mixed boundary problem was reduced to a system of singular intergral equations. The stress intensity factors were obtained by solving the singular intergral equations. Moreover, the influences of geometric parameters, the graded parameter, the crack length and speed on the stress intensity factors were investigated. The numerical results show that the graded parameters, the thicknesses of functionally graded strip and the homogeneous material substrate, the crack size and speed have significant effects on the dynamic fracture behavior.
出处 《力学季刊》 CSCD 北大核心 2008年第1期78-84,共7页 Chinese Quarterly of Mechanics
关键词 功能梯度材料 涂层 运动裂纹 应力强度因子 functionally graded material coating moving crack stress intensity factor
  • 相关文献

参考文献12

  • 1Eischen J W. Fracture of nonbomogeneous material[J]. International Journal of Fracture, 1987,34:3 - 22.
  • 2Jin Z H, Batra R C. Some basic fracture mechanics concepts in functionally graded materials[J]. Journal of the Mechanics and Physics of Solids, 1996,44: 1221 - 1235.
  • 3Marur P R, Tippur H V. Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient[J]. International Journal of Solids and Structures, 2000,37 : 5353 - 5370.
  • 4Abanto-Bueno J, Lambros J. An experimental study of mixed mode crack initiation and growth in functionally graded materials[J]. Experimental Mechanics, 2006,46 : 179 - 196.
  • 5Chen J, Liu Z X, Zou Z Z. Transient internal crack problem for a nonhomogeneous orthotropic strip (mode Ⅰ)[J]. Int J Engng Sci, 2002,40 : 1761 - 1774.
  • 6Guo L C, Wu L Z, Zeng T, Ma L. Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface-Part Ⅱ : Transient problem[J]. Int J Fract, 2004,127:39 - 59.
  • 7Meguid S A, Wang X D, Jiang L Y. On the dynamic propagation of a finite crack in functionally graded materials[J]. Engng Fract Mech, 2002,69 : 1753 - 1768.
  • 8Ma L, Wu L Z, Zhou Z G, Zeng T. On the moving Griffith crack in an inhomogeneous orthotropic strip[J]. Int J Fract, 2005,136:187 - 205.
  • 9Singh B M, Rokne J, Vrbik J, Dhaliwal R S. Finite Griffith crack propagating in a non-homogeneous medium[J]. Eur J Mech A/Solids, 2006,25:867- 875.
  • 10Cheng Z Q, Zhong Z. Analysis of a moving crack in a functionally graded strip between two homogeneous layers[J]. Int J Mech Sci, 2007,49 : 1038 - 1046.

同被引文献28

  • 1Yoffe E Y. The moving griffith crack [ J ]. Philosophical Magazine, 1951, 42(7) : 739 -750.
  • 2Hu Ke-qiang, Li Guo-qiang. Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading [ J]. International Journal of Solids and Structures, 2005, 42(9 - 10) : 2823 -2835.
  • 3Hermann K P, Komarov A V, Loboda V V. On a moving interface crack with a contact zone in a piezoelectric bimaterial [ J ]. International Journal of Solids and Structures, 2005, 42( 16- 17): 4555-4573.
  • 4Lapusta Y, Komarov A, Labesse-Jied F, et al. Limited permeable crack moving along the interface of a piezoelectric bi-material [ J ]. European Journal of Mechanics-A/Solids, 2011, 30(5) : 639 -649.
  • 5Hu Ke-Qiang, Kang Yi-Lan, Qin Qing-Hua. A moving crack in a rectangular magnetoelectroelastic body [ J ]. Engineering Fracture Mechanics, 2007, 74(5) : 751 - 770.
  • 6Xie C, Liu Y W. Cracking characteristics of a moving screw dislocation near an interfacial crack in two dissimilar orthotropic media [ J ]. Theoretical and Applied Fracture Mechanics, 2008, 50(3): 214-219.
  • 7Sih G C, Jones R. Crack size and speed interaction characteristics at micro-, meso- and macro-scale [ J ]. Theoretical and Applied Fracture Mechanics, 2003, 39 (2) : 127 - 136.
  • 8Tang X S, Sih G C. Kinetics of microcrack blunting ahead of macrocrack approaching shear wave speed [ J ]. Theoretical and Applied Fracture Mechanics, 2004, 42(2) : 99 -130.
  • 9Rosakis A J, Samudrala O, Coker D. Cracksfaster than the shear wave speed [J]. Science, 1999, 284(5418) : 1337 - 1340.
  • 10Sih G C, Tang X S. Dual scaling damage model associated with weak singularity for macro-seopie crack possessing a micro-/meso-scopie notch tip [ J ]. Theoretical and applied fracture mechanics, 2004, 42 ( 1 ) : 1 - 24.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部