期刊文献+

信息融合在复杂油气储层物性参数综合研究中的应用 被引量:14

The application of data fusion in the research of physic parameters of complicated oil-gas reservoir
下载PDF
导出
摘要 油气藏的孔隙度、含气饱和度和渗透率等多个因素分别揭示了油气藏的某方面的特性,在进行油气藏勘评价时需要将各方面的信息进行综合考虑.传统的处理方法是进行图形叠合,这往往要根据经验来进行,当中人为因素较大,不易控制.本文将特征信息融合的方法引入到油气评价中,采用基于卡尔曼滤波的特征信息融合的方法构造一种新的综合特征参数来描述油气藏,使用综合特征参数对油气藏进行评价,尽量消除人为因素的作用,从而更真实的反映油气储层的地质状况,确定油气开采的最优井位. The factors, such as porosity, gas-bearing saturation and permeability, open out some characteristic of the oil-gas reservoir. All the factors should be taken into account when the oil-gas reservoir is been evaluating. The traditional way is to produce a geological information figure according to the factors. It always needs experience, so great deals of personal factors are involved. This work is to build a new way to evaluate oil-gas resource by a new parameter through the diagnostic data fusion based on Kalman filter. The way would avoid the affection of operating crew, evaluate the reserve more impersonal and indicate the best oil-gas field more effectual.
出处 《地球物理学进展》 CSCD 北大核心 2008年第1期153-156,共4页 Progress in Geophysics
基金 国家973计划项目(2002CB412607) 高校博士点专项科研基金(20040616005) 四川省科技厅应用基础项目(05TY029-087-1) 四川省教育厅自然科学重点项目(203156) 成都理工大学地质灾害防治与地质环境保护国家专业实验室开放基金支助项目(GZ2005-09)联合资助
关键词 油气储层 信息融合 卡尔曼滤波 oil-gas reservoir, data fusion, Kalman filter
  • 相关文献

参考文献3

  • 1Richard D,Kathryn B L, James W M, Simon P. Introduction to the special issue on the fusion of domain knowledge with data for decision support[J].Journal of Machine Learning Research, 2004, 4(3) :293-294.
  • 2Dasarathy B V. Industrial applications of multi-sensor multisource information fusion[A]. Proceedings of IEEE International Conference on Industrial Technology 2000[C]. India, 2000,1:5-11.
  • 3郭科,彭继兵,许强.应用多传感器目标跟踪融合技术实现滑坡多点监测数据综合信息的提取[J].地球物理学进展,2005,20(3):808-813. 被引量:8

二级参考文献6

  • 1李天斌 陈明东 等.滑坡实时跟踪预报[M].成都:成都科技大学出版社,1999..
  • 2Lucy Y, Lidija T. The optimal order of processing sensor information in sequential multisensor fusion algorithms [J].IEEE Transactions on Automatic Control, 2000.
  • 3Salah Eric. The ANSER project: data fusion across multiple uninhabited air vehicles[J]. International Journal of Robotics Research, 2003.
  • 4Bar-Shalom. One step solution for the multistep out-of-sequence-measurement problem in tracking[J]. IEEE Transactions on Aerospace & Electronic Systems, 2004.
  • 5Wu Qishi, Nageswara S V. On computing mobile agent routes for data fusion in distributed sensor networks [J]. IEEE Transactions on Knowledge & Data Engineering, 2004.
  • 6Willner D, Chang C B, Dunn K P. Kalman filter algorithms for a multisensor system[J]. In Proc IEEE Conf. Decision and Control, 1976.

共引文献7

同被引文献187

引证文献14

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部