期刊文献+

基于可变数据重用因子的变步长仿射投影算法 被引量:2

A variable step-size affine projection algorithm based on a variable data-reuse factor
下载PDF
导出
摘要 提出的仿射投影算法可根据输入数据矩阵条件数的变化情况,实时地决定下一步输入矩阵的维数,即数据重用因子和步长,并利用这两个动态量去折中收敛速度和稳态误差之间的矛盾.仿真结果表明,在较大程度节省了运算量的情况下,该算法的收敛速度接近于使用高维输入矩阵的情况,而稳态误差与使用低维输入矩阵时相当,同时收敛稳定性更优. The dimension of a next input signal matrix can be determined by the variation of the condition number between current and previous steps, which are the data-reuse factor and step-size. Then the conflict between convergence rate and stable-state error was settled by these two dynamic factors. Simulation results show that under the presupposition of considerable computation reduction, the convergence rate of this algorithm is close to the high dimension situation, and the stable-state error is nearly the same as the low dimension condition. The convergence stability is also improved.
作者 聂聪 吕振肃
出处 《山东大学学报(工学版)》 CAS 2008年第1期36-38,104,共4页 Journal of Shandong University(Engineering Science)
关键词 仿射投影算法 条件数 数据重用因子 变步长 APA (affine projection algorithm) condition number data reuse factor variable step-size
  • 相关文献

参考文献9

  • 1OZEKI K, UMEDA T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties [J]. Electronics and Communications, 1984, 67-A(5) : 19- 27.
  • 2HAYKIN S. Adaptive filter theory[M]. 3rd ed. NJ: Prentice Hall, 1996.
  • 3SHIN H C, SAYED A H. Mean-square performance of a family of affine projection algorithms[J]. IEEE Transactions on Signal Processing, 2004, 52(1):90-102.
  • 4SANKARAN S G, BEEX A A. Convergence behavior of affine projection algorithms[J]. IEEE Transactions on Signal Processing, 2000, 48(a) : 1086-1096.
  • 5WERNER STEFAN, DINIZ S R, MOREIRA E W. Setmembership affine projection algorithm with variable data-muse factor[ C ]. Island of Kos, Greece: IEEE ISCAS, 2006: 261- 264.
  • 6JOACHIM D, DELLER J R. Multiweight optimization in optimal bounding ellipsoid algorithms [J]. IEEE Transactions on Signal Processing, 2006, 54: 679-690.
  • 7BENESTY JACOB, GANSLER TOMAS. A recursive estimation of the condition number in the RLS algorithm [ J ]. IEEE ICASSP, 2005, 4:18-23.
  • 8SHIN H C, SAYED A H, SONG W J. Variable step-size nlms and affine projection algorithm[J]. IEEE Signal Processing Letters, 2004, 11(2) : 132-135.
  • 9SHIN H C, SONG W J, SAYED A H. Mean-square performance of data-reusing adaptive algorithms[J]. IEEE Signal Processing Letters, 2005, 12(12) :851-854.

同被引文献18

  • 1李少伟,裴承鸣,钟雄虎,王华朋.一种改进的变步长仿射投影算法[J].计算机仿真,2006,23(10):69-71. 被引量:3
  • 2Ozeki K,Umeda T.An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties[J]. Electron Commun Jpn,1984,67(5): 19-27.
  • 3Shin H c,sayed A H,Song W J.Variable step-size NLMS and affine projection algorithms [J]. IEEE Signal Processing Letters, 2004,11(2):132-135.
  • 4Dai T, Adler A, Shahrrava B.A variable step-size affine projection algorithm with a weighted projection matrix[C].IEEE Canadian Conference(CCECE),2005:320-323.
  • 5Dai T, Adler A, Shahrrava B.Variable step-size alTme projection algorithm with a weighted and regularized projection matrix[C]. IEEE Canadian Conference(CCECE),2006:1201-1204.
  • 6Lee C W,CHO H,Ban S J,et al. A Derivation of the excess mean square error for affine projection algorithms using the condition number[C]//Control,Automation and Systems, 2007.ICCAS '07. International Conference. Seoul:[s.n.], 2007:1708-1711.
  • 7Rey H,Verge L R,Tressens S,et al. Variable Explicit Regularization in Affine Projection Algorithm: Robustness Issues and Optimal Choice[J]. IEEE Tran. on Signal Processing, 2007,55(5):2096-2109.
  • 8Benesty J,Gansler T. A Recursive Estimation of the Condition Number in the RLS Algorithms[C]//Proc. IEEE International Conference on Acoustics,Speech,and Signal Processing. Montreal:[s.n.], 2005:25-28.
  • 9Shin H C,Sayed A H,Song W J. Variable Step-Size NLMS and Affine Projection Algorithms[J]. IEEE Lett. Signal Processing, 2004,11(2):132-135.
  • 10Sayed A H. Fundamentals of Adaptive Filtering[M]. New York:Wiley, 2003.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部