期刊文献+

降维法快速求解A(n,k)精确公式 被引量:2

A Rapid Method of Getting the Accurate Formula of A(n,k) by Reduced Dimensions
下载PDF
导出
摘要 A(n,k)=sum from m=1 to k sum r=1 to m sum j=0 to [k/m]-1 (tm,r,j (k)×nj×s(r,m)×ζmnr,ζm=e2πi/m,s(r,m)={1,gcd(r,m)=1 0,其他)为丢番图方程sum i=1 to k (ixi=n)的非负整数解的个数.虽然用解线性方程组的方法可求得A(n,k)的所有系数,然而,该求解过程却非常耗时.本文利用方程(1-x)(1-x2)...(1-xk)=0的相异根的幂可能存在的相等关系,即取适当的正整数g使某些相异根的g次幂相等来实现同类项系数的合并以降低方程的维数,达到提高方程求解速度的目的. Let A (n, k) be the number of nonnegative integer solutions for the Diophantineequation ∑i=1^kixi=n.We can get all coefficients of the A (n, k), by solving the system of linear equations for the coefficients of the A(n,k), where, A(n,k) =k↑∑↑m=1m↑∑↑r=1 [k/m]-1↑∑↑j=0tm,rj^(k)×n^j×s(r,m)×ζm^nr,ζm=e^2π/m,s(r,m)={1,gcd(r,m)=1 0,其他. But this processing will costour much time. To solve the problem, this paper has provided a new method, which reduces the dimensions of the system of linear equations by collating coefficients of the qi^g ,qc≠i^g in the A(n,k) when qi^g =qc≠i^g, the roots of the equation(1 -x)(1 -x^2).. (1 -x^k) =0.Then the dimensions of the constructed system of linear equations are reduced, so improves the speed of solving the equations.
出处 《南华大学学报(自然科学版)》 2008年第1期60-64,共5页 Journal of University of South China:Science and Technology
关键词 快速解性线方程组 丢番图方程 解数 无序分拆 范德蒙行列式 Fast solve system of linear equations Diophantine equation number of solutions unordered integer partition Vandermonde determinant
  • 相关文献

参考文献9

二级参考文献18

共引文献246

同被引文献18

  • 1郭育红,张先迪.关于一类不定方程的正整数解数[J].四川师范大学学报(自然科学版),2006,29(2):197-199. 被引量:12
  • 2郭育红.与正整数的无序分拆和有序分拆相关的一些恒等式[J].数学学报(中文版),2007,50(3):707-710. 被引量:16
  • 3吴树宏.A(n,k)和P(n,k)的精确公式[J].Journal of Mathematical Research and Exposition,2007,27(2):437-444. 被引量:4
  • 4陈芳,黄益如.经典Lucas-Fibonacci数列的上、下界公式研究[J].应用数学与计算数学学报,2007,21(1):116-120. 被引量:3
  • 5Agarwal A K.An analogue of Euler's identity and new combinatorial properties of n-colour compositions[J].Comput Appl Math,2003,160:9-15.
  • 6Alladi K.A Variation on a theme of Syslvester-a smoother road to Gollniz (Big) theorem[J].Discrete Math,1999,196:1-11.
  • 7Barcuei E,Del L A,Pergola E,et al.Some combinatorial interpretation of q-analogs of Schrǒder numbers[J].Annals of Combinatorics,1999,3:171-190.
  • 8Andrews G E.Ramanujan's "lost" notebook IV:Stacks and alternating partitions[J].Adv Math,1984,53:55-74.
  • 9Agarwal A K. An analogue of Euler' s identity and new Combinatorial properties of n - colour compositions [ J ]. Comput Appl Math ,2003,160:9 - 15.
  • 10Alladi K. A variation on a theme of Syslvester- a smoother road to Gollniz(Big) theorem[ J]. Discrete Math, 1999,196:1 -11.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部