期刊文献+

基于神经网络的项目参数估计方法 被引量:6

Method of Item Parameter Estimation Based on Neural Networks
下载PDF
导出
摘要 针对题库建设中项目参数估计的实际问题,提出了一种全新的基于神经网络的参数估计方法;并以二值记分的3PLM为项目反应理论模型,以广义回归神经网络为网络模型,根据Monte Carlo实验法进行了模拟实验研究,最后将神经网络方法与传统的数理统计估计方法进行了比较。结果表明,在小样本测验情况下,神经网络方法具有一定的优势,尤其是当去掉对项目参数的先验概率分布的限制时,神经网络方法的优势更加明显,说明本文提出的方法具有一定的价值。 To solve the problem on item parameter estimation when constructing item bank, a new method based on neural networks (NN) is proposed here. And by choosing three-parameter logistic model (3PLM), general regression neural networks (GRNN) and Monte Carlo as the item response theory (IRT) model, NN model and experimental method respectively, some simulation experiments are conducted. To inspect whether our method works well, a comparison is carried out between the NN method and traditional method, which indicates that the former is more advanta-geous, especially when the traditional method cancels its item prior constrains.
出处 《计算机科学》 CSCD 北大核心 2008年第3期134-136,共3页 Computer Science
关键词 广义回归神经网络 题库 项目反应理论 参数估计 小样本 General regression neural networks, Item bank, Item response theory, Parameter estimation, Small sample
  • 相关文献

参考文献8

  • 1漆书清,戴海崎,丁树良.现代教育与心理测量学原理[M].北京:高等教育出版社,2002.239-244
  • 2余嘉元.基于联结主义的连续记分IRT模型的项目参数和被试能力估计[J].心理学报,2002,34(5):522-528. 被引量:16
  • 3余嘉元,陈淑燕.运用径向基网络估计项目反应模型参数的研究[J].中国考试,2005(4):24-26. 被引量:5
  • 4高祖新 尹勤.实用统计计算[M].南京:南京大学出版社,1996..
  • 5Specht D. A General Regression Neural Network [J]. IEEE Transactions on Neural Networks, 1991,2 (6): 568-576
  • 6Baker F. Item Response theory.. Parameter Estimation Techniques [M]. New York: Marcel Decker, 1992
  • 7Zimowski M, Muraki E, Mislevy R, et al. BILOG-MG:Multiplegroup IRT Analysis and Test Maintenance for Binary Items [M]. Chicago: Scientific International, Inc, 1996
  • 8Miskey R. Bayes Modal Estimation in Item Response Models [J]. Psychometrika, 1986,51: 177-195

二级参考文献12

  • 1余嘉元.运用联结主义模型研究知觉边界效应问题[J].心理学报,2001,33(2):123-126. 被引量:6
  • 2Hambleton R K. Item Response Theory: Principles and Applications. Boston: Kluwer-Nijhoff Pub,1985.58~63
  • 3Baker F B. Item Response Theory: Parameter Estimation Techniques. New York: M.Dekker,1992.66~71
  • 4McLead P. Introduction to Connectionist Modeling of Cognitive Processes. New York: Oxford University Press, 1998.256~261
  • 5Mahwah N J,Erlbaum L L. Localist Connectionist Approaches to Human Cognition. New York: Oxford University Press,1998,188~192
  • 6Anderson, J. A. An Introduction to Neural Networks. Cambridge:The MIT Press, 1995,136~143.
  • 7Haykin S S. Neural Networks: A Comprehensive Foundation. Upper Saddle River, N. N., Press Hall, 1999. 178~181
  • 8Fahlman S E,Lebiere C. The Cascade-correlation learning architecture. In: Touretzky D S ed. Advances in Neural Information Processing Systems. Los Altos, CA: Morgan Kaufmann, 1990. 524~532
  • 9Samejima F. Homogeneous case of the continuous response model. Psychometrika, 1973, 38(3): 203~219
  • 10Muller H. A Rasch model for continuous ratings. Psychmetrika, 1987, 52(2):165~181

共引文献28

同被引文献98

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部