期刊文献+

一种新的基于粗糙集的leader聚类算法 被引量:4

A Novel Rough-based Leader Clustering Algorithm
下载PDF
导出
摘要 传统聚类方法将对象严格地划分到某一类,但很多时候边界对象不能被严格地划分。粗糙集用上近似集和下近似集表示一个类,对这种边界不确定的处理非常有效,典型算法有基于粗糙集的k-means聚类算法和基于粗糙集的leader聚类算法。本文针对RFA(Rough Fuzzy Approach)算法存在的不足,提出了一种新的基于粗糙集的leader聚类算法(NRL,Novel Rough-based Leader)。其基本思想是首先数据项由于与其最近类中心的距离不同,分别被划分到leader集或者supporting leader集,然后对leader集和supporting leader集进行标号,得到聚类结果。实验结果表明NRL算法非常有效。 Objects are partitioned into clusters with crisp boundaries in the conventional algorithms. However, clusters do not necessarily have crisp boundaries. Rough set is represented with lower-bound and upper-bound, and is good for the case. At present, there have been some typical algorithms, such as the rough-based k-means clustering algorithm and the rough-based leader clustering algorithm. In this paper, a novel rough-based leader clustering algorithm is pro- posed, since there are some disadvantages in the RFA algorithm. At first, data are partitioned into the set of leaders or the set of supporting leaders according to the difference of the distance of data and the nearest leader. And then, it la-bels the set of leaders and the set of supporting leaders in order to find the clustering result. We present results to demonstrate its validity.
出处 《计算机科学》 CSCD 北大核心 2008年第3期177-179,共3页 Computer Science
基金 福州大学科技发展基金资助项目(2005-XQ-13 2006-XQ-22 XRC-0511) 福建省教育厅资助项目(JB06023)
关键词 聚类 粗糙集 K-MEANS算法 leader算法 Clustering, Rough set, K-means algorithm, Leader algorithm
  • 相关文献

参考文献6

  • 1Lingras P. Rough set clustering for Web mining. IEEE, 2002. 1039-1044
  • 2Lingras P. Interval Set Clustering of Web Users with Rough K- Means. Journal of Intelligent Information System. ,20.04,23(1):5-16
  • 3Asharaf S. An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recognition,2003,36:3015-3018
  • 4Asharaf S. A Rough Fuzzy Approach to Web Usage Categorization. Fuzzy Sets and Systems, 2004, 148(1):119-129
  • 5Pawlak Z. Rough Sets . International Journal of Computer and Information Sciences, 1982 (11): 341-356
  • 6Pawlak Z. rough classification, international journal of man-machine studies, 1984,20:469-483

同被引文献37

  • 1李祖鹏,黄道颖,庄雷,黄建华.Peer-to-Peer网络模型研究[J].计算机工程,2004,30(12):29-31. 被引量:13
  • 2马力,焦李成,刘国营.一种基于路径聚类的Web用户访问模式发现算法[J].计算机科学,2004,31(8):140-141. 被引量:10
  • 3柴勇,刘一松,曹阳.基于分层p2p系统的失效恢复机制的改进[J].微计算机信息,2006,22(10X):16-18. 被引量:8
  • 4Lingras P. Interval set clustering of web users with Rough k-Means[J]. Journal of Intelligent Information System ( S 0925-9902 ), 2004,23 ( 1 ) : 5-16.
  • 5Foss A, Wang W, Zaiane O R. A non-parametric approach to web log analysis[ C ]//Proeeedings of Workshop on Web Mining in First International SIAM Conference on Data Mining , 2001.
  • 6Asharaf S. A rough fuzzy approach to web usage categorization [ J ]. Fuzzy Set and Systems ( S O165-0114 ), 2004,148 ( 1 ) : 119-129.
  • 7Han J W. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining and knowledge Discover( S 1384-5810), 1998, 2 ( 1 ) :283-304.
  • 8Luotonen A. The common log file format[ EB/OI,]. [ 2008-05-15 ]. http ://www. w3. org/pub/WWW/.
  • 9LI JUAN. ECSP: An efficient clustered super-peer architecture for P2P network [D]. Vancouver: University of British Columbia, 2001.
  • 10Gnutella [ EB/OL]. [2011-05-20]. http://www. gnutella. com.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部