期刊文献+

基于矩阵的频繁模式挖掘及更新算法

Frequent Patterns Mining and Incremental Updating Algorithm Based on Matrix
下载PDF
导出
摘要 频繁模式挖掘在数据挖掘领域已经有广泛的应用。然而,对于增量更新频繁模式挖掘研究得不是很多。本文提出了一种新颖的增量更新频繁模式树结构(IUNP_Tree),构建它只需要对数据库扫描一次。此外,提出了基于条件矩阵(conditional matrix)的频繁模式挖掘算法(FPBM_Mine)和增量更新算法INUPA,可以有效地处理数据库的增量更新问题。实验表明,该算法是有效的,并且运行效率高于FP-growth算法。 Frequent patterns mining has been studied popularly in KDD research. However, little work has been clone on incremental updating frequent patterns mining. A novel incremental updating pattern tree (INUP_Tree) structure is present is paper, which is constructed by scanning. database only once. Besides, a new frequent pattern mining method (FPBM_Mine) based on conditional matrix and incremental updating algorithms INUPA are developed. The experiment result shows that the FPBM_Mine method is more efficient and faster than the FP-growth.
出处 《计算机科学》 CSCD 北大核心 2008年第3期200-202,共3页 Computer Science
关键词 数据挖掘 增量更新 频繁模式挖掘 Data mining, Incremental updating, Frequent pattern mining
  • 相关文献

参考文献5

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In:Proc. of the ACM SIGMOD Conference, 1993. 207-216
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In:Proc. of VLDB Conf, 1994. 487-499
  • 3Cheung D W, I-tan J, Ng V T, el al. Maintenance of discovered association rules in large databases: An incremental updating approach. In. The 12th IEEE International Conference on Data Engineering, 1996. 106-114
  • 4Agarwal R,Aggarwal C, Prassad V V V. A tree projection algorithm for generation of frequent itemsets. Journal of Parallel and Distributed Computing, 2001.61 : 350-371
  • 5Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceeding of the ACM SIGMOD Conference, 2000. 1-12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部