期刊文献+

基于基空间转换的姿态人耳识别

Posed Ear Recognition Based on Basis Space Transformation
下载PDF
导出
摘要 人耳识别是近年来新兴起的一种生物特征识别技术,然而姿态问题一直是其难点问题之一,针对此问题提出了一种基于基空间转换的新方法.首先,利用主元分析和核主元分析方法得到姿态人耳图像和正侧面人耳图像的基空间,通过计算两种基空间之间的线性转换关系求出姿态转换矩阵,然后将待测的姿态人耳图像特征集利用基空间姿态转换矩阵转变成正侧面人耳图像特征集,最后用支持向量机进行分类识别.实验结果表明,该方法与没有经过姿态转换的方法相比,识别率显著提高. Ear recognition is a kind of new biometrics in recent years. Pose change, however, is one of the difficult problems to ear recognition. Therefore′ this paper proposes a new method based on basis space transformation to solve ear pose problem. Firstly, basis spaces including the posed ear images and the frontal ear images are obtained using PCA or KPCA. Secondly, the pose transformation matrix is gained in the light of linear transformation relation between two kinds of basis spaces. Thirdly, features of the posed ear images to be test are transformed into those of corresponding frontal ear images on the basis of the pose transformation matrix. Finally, the generated frontal ear features are identified by Support Vector Machine method. Experimental results show that the recognition rate with the pose transformation outperforms that without pose transfor- mation remarkably.
出处 《郑州大学学报(工学版)》 CAS 2008年第1期31-34,共4页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(60573058) 北京市教委重点学科共建项目(XK100080537)
关键词 基空间转换 人耳识别 主元分析 核主元分析 姿态转换矩阵 支持向量机 basis space transformation ear recognition PCA KPCA pose transformation matrix SVM
  • 相关文献

参考文献6

  • 1张海军,穆志纯.基于复合结构分类器的人耳识别[J].北京科技大学学报,2006,28(12):1186-1190. 被引量:5
  • 2LEE H S, KIM D J. Generating frontal view face image for pose invariant face recognition [ J]. Pattern Recognition Letters, 2006, 27:747 - 754.
  • 3MENG J C, Zhang W B. Volume measure in 2DPCA -based face recognition[ J]. Pattern Recognition Letters, 2007, 28(10) : 1203 - 1208.
  • 4LIU C J. Gabor- based kernel PCA with fractional power polynomial models for face recognition [ J ]. IEEE trans pattern Anal Mach Intell, 2004, 26 (5): 572 - 580.
  • 5HEISELE B, HO P, WU J, et al. Face recognition: component- based versus global approaches [ J ]. Computer Vision and Image Understanding, 2003, 91 : 6 -21.
  • 6齐保林,李凌均,李志农.基于支持向量机的故障模式识别研究[J].郑州大学学报(工学版),2007,28(1):9-11. 被引量:6

二级参考文献15

  • 1王忠礼,穆志纯,王修岩,弭洪涛.基于不变矩匹配的人耳识别[J].模式识别与人工智能,2004,17(4):502-505. 被引量:12
  • 2Burge M J,Burger W.Using ear biometrics for passive identification∥14th International Information Security Conference.Vienna,1998:139
  • 3Hurley D J,Nixon M S,Carter J N.Force field energy functionals for image feature extraction.Image Vision Comput,2002,20(5):311
  • 4Chang K,Bowyer K W,Sarkar S,et al.Comparison and combination of ear and face images in appearance-based biometrics.IEEE Trans Pattern Anal Mach Intell,2003,25(9):1160
  • 5Bartlett M S.Face Image Analysis by Unsupervised Learning and Redundancy Reduction[Dissertation].University of California San Diego,1998
  • 6Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis.Neural Comput,1997,9(7):1483
  • 7Carreira-Perpinan M A.Compression neural networks for feature extraction:application to human recognition from ear images[Dissertation].Spain:Technical University of Madrid,1995
  • 8Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis.IEEE Trans Neural Networks,1999,10(3):626
  • 9Vapnik V N.统计学习论理的本质.张学工,译.北京:清华大学出版社,2000
  • 10VAPNIK V N.The nature of statistical learning theory[M].2nd Edition,New York:Spring-Verlag,1999.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部