期刊文献+

基于支持向量机的直升机建模 被引量:2

Modeling for helicopter based on support vector machine
下载PDF
导出
摘要 为建立高精度的直升机仿真模型,首次把支持向量机方法引入直升机智能化建模领域。对实际飞行数据进行野值剔除、高频滤波和微分平滑等预处理。在此基础上,利用支持向量机建立了直升机自转着陆过程的旋翼转速模型。与神经网络模型相比,该模型具有结构简单、运算速度快、泛化能力高等特点。理论分析和仿真结果表明,用支持向量机建立直升机的仿真模型是切实可行的。 To construct simulation model of a helicopter with high precision, the Support Vector Machine (SVM) method was introduced to the field of intelligent modeling of a helicopter. Based on pretreatment of practical flight data, such as eliminating outliers, filtering of high frequency noise, and differential smooth, the rotator speed model for landing process of a helicopter with rotator self-rotating was built up. Compared to the neural network model, the SVM simulation model of the helicopter was characterized by its simple structure, fast convergence speed and high generalization ability. It was revealed by theoretic analysis and simulation result that simulation model of a helicopter built by SVM method was feasible.
作者 王书舟 伞冶
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第3期470-476,共7页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(60474069)~~
关键词 支持向量机 直升机 仿真模型 泛化能力 support vector machine helicopter simulation model generalization ability
  • 相关文献

参考文献15

  • 1KIM S K, TILBURY D M. Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics[J]. Journal of Robotic Systems, 2004,21 (3) : 95-116.
  • 2HASHIMOTO S, OGAWA T. System identification experiments on a large-seale unmanned helieopter for autonomous flight[C].Proeeedings of IEEE International Conference on Control Applications. Washington, D. C., USA: IEEE, 2000:25-27.
  • 3蔡金狮.飞行器系统辨识学[M].北京:国防工业出版社,2002.
  • 4MA Guozhi, SABATTO S Z. Intelligent flight control design for helicopter yaw eontrol[C].Proeeedings of the 30th Southeastern Symposium on System Theory. Washington, D. C. , USA: IEEE, 1998:184-188.
  • 5SABATTO S Z, ZHENG Y X. Intelligent flight controllers for helicopter control[C].Proeeedings of International Conferenee on Neural Networks. Washington, D. C., USA: IEEE, 1997, 2:617-621.
  • 6SURESH S, KUMAR M V. Neural networks based identification of helicopter dynamics using flight data[C].Proceedings of the 9th International Conference on Neural Information Processing. Washington, D. C. , USA: IEEE, 2002,1 : 10-14.
  • 7李建波,高正.直升机机动飞行仿真的气动建模及试验研究[J].航空学报,2003,24(2):116-118. 被引量:12
  • 8王辉,徐锦法,高正.基于神经网络的无人直升机姿态控制系统设计[J].航空学报,2005,26(6):670-674. 被引量:13
  • 9VAPNIK V. The nature of statistical learning theory [ M]. New York, N. Y. , USA:Springer-Verlag, 2000.
  • 10SCHOLKOPF B, SMOLA A. New support vector algorithm [J]. Neural Computation, 2000, 12(5): 1207-1245.

二级参考文献29

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2李建平,徐伟宣,刘京礼,石勇.消费者信用评估中支持向量机方法研究[J].系统工程,2004,22(10):35-39. 被引量:22
  • 3杨树莲.数据挖掘在电信行业客户流失分析中的应用[J].计算机与现代化,2005(2):109-111. 被引量:8
  • 4[1]Handling qualities requirments for militray rotorcraft[S].ADS-33E-PRE AMCOM, 2000.
  • 5[6]Howlett J J. UH-60A black hawk engineering simulation program[R]. NASA-CR-166309, 1981.
  • 6[7]Ballin M C. Validation of a real time engineering simulation of the UH-60A helicopter[R].NASA-TM-88360,1987.
  • 7[1]RATSABY J. Incremental learning with sample queries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(8) :883-888.
  • 8[2]WANG E H C, KUH A. A smart algorithm for incremental learning[J]. International Joint Conference on Neural Net works, 1992,3:121 - 126.
  • 9[3]VAPNIK V. The nature of statistical learning theory[M]. New York: Springer- Verlag, 1995.
  • 10[4]CHRISTOPHER J,BURGES C. A tutorial on support vector machines for pattern recognition[M]. Boston: Kluwer Academic Publishers, 1998.

共引文献90

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部