期刊文献+

基于决策树及遗传算法的人工免疫入侵检测算法 被引量:3

Intrusion Detection Algorithm of Artificial Immune Based on Decision Tree and Genetic Algorithm
下载PDF
导出
摘要 针对传统的否定选择算法中生成大量无效抗体,并且抗体之间缺乏多样性的问题,设计了基于决策树及遗传算法的人工免疫入侵检测算法。将决策树和遗传算法引入传统的否定选择算法中,利用决策树计算抗原和抗体之间的亲和力,提出了新fitness的计算公式,并利用抗体浓度衡量抗体集的多样性,将低浓度抗体代替高浓度抗体,实现了抗体的多样性,确保了当抗体集的数量一定时尽可能覆盖最大的非自体集空间,以提高抗体集的性能。 Aiming at solving the problem that there were large amounts of ineffective antibodies and the antibodies were lack of diversity in the traditional negative selection algorithm ,this paper designed intrusion detection algorithm of artificial immune based on decision tree and genetic algorithm. The decision tree and the genetic algorithm were introduced into the traditional negative selection algorithm, the affinity between antibody and antigen was calculated using decision tree, the new formula of fitness was raised. The diversity of antibody set was measured by concentration of antibody, and the high concentration antibodies were replaced by the low concentration antibodies to achieve the diversity of the antibody set. When the quantity of the antibody set was kept at a constant, the nonself set space could be covered as large as possible So as to enhance the capability of the antibody set.
出处 《微计算机应用》 2008年第3期11-15,共5页 Microcomputer Applications
基金 湖北省教育厅重点科研项目基金(2004D006)的资助
关键词 人工免疫 入侵检测 决策树 遗传算法 否定选择算法 artificial immune, intrusion detection, decision tree, genetic algorithms, negative selection algorithm
  • 相关文献

参考文献7

  • 1Forrest S, Perleson A, Allen L, et al. Self- Nonself discrimination in a computer. Oakland, USA: Proceedings of IEEE Symposium on Research in Security and Privacy, 2002. 202 - 212.
  • 2Kim J, Bentley P. An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In Genetic and Evolutionary Computation Conference 2001 ( GECCO - 2001 ), San Francisco USA, CA, 2001,1330 - 1337.
  • 3J Kim, P J Bentley. Towards an Artificial Immune System for Network Intrusion Detection : An investigation of Dynamic Clonal Selection with negative Selection Operator. In : Proceedings of the Congress on Evolutionary Computation, ( CEC - 2002), Honolulu USA, 2002 -05 - 12- 17 : 1015 - 1020.
  • 4J Kim, P J Bentley. A Model of Gene Library Evolution in the Dynamic Cional Selection Algorithm. Proceedings of the First International Conference on Artificial Immune Systems ( I CARIS), Canterbury UK,2002 - 09 - 9 - 11:57 - 65.
  • 5吴泽俊,钱立进,梁意文.入侵检测系统中基于免疫的克隆选择算法[J].计算机工程,2004,30(6):50-52. 被引量:15
  • 6Tom M.Mitchell.机器学习.北京:机械工业出版社,2006.38-60.
  • 7刘莘,张永平,万艳丽.决策树算法在入侵检测中的应用分析及改进[J].计算机工程与设计,2006,27(19):3641-3643. 被引量:27

二级参考文献15

  • 1张雪芹,顾春华,林家骏.入侵检测技术的挑战与发展[J].计算机工程与设计,2004,25(7):1096-1099. 被引量:14
  • 2姚家奕,姜海,王秦.决策树算法的系统实现与修剪优化[J].计算机工程与设计,2002,23(8):75-77. 被引量:11
  • 3李玲娟.基于数据挖掘的Snort增强模型的研究[J].南京邮电学院学报(自然科学版),2004,24(4):1-5. 被引量:3
  • 4Tizard I R.Immunology:Introduction (4th Ed).Saundcrs College Publishing, 1995.
  • 5Dasgupta D (Ed). Artificial Immune Systems and Fheir Applications.Springer-Verlag.Berlin.1998:3-21.
  • 6Holimeyer S,Forrest S.Arehiccture for an Artificial Immune System.Evolutionary Computation.2000,7(1):45-68.
  • 7Kim J.Bentley P. The Artificial Immune Model for Network Intrusion Detection .7th Euroopean Conference on Intelligent Techniques and Soft Computing(EUFIT99).Aachen,Germany,1999.
  • 8Kim J, Bentley P. The Human Immune System and Network Intrusion Detection. 7th Eturopcan Conference on Intelligent Techniques and Soft Computing (EUFIT99), Aachen, Germnany. 1999.
  • 9Kim J,Bentley P,An Evaluation of Negative Schection in an Artificiat Immune System for Network Itrusion Detection.In Genetie and Evolutionary Computatio n Computation Conference 2001(GECCO-2001),San Francisco.CA,2001:1330-1337.
  • 10Forrest.Self-Nonself Discrimination in a Computer.Proceedings of 1094 IEEE Symposium on Research in Sccurity and Privacy Los Alamos, CA: IEEE Computer Sociely Press. 1994.

共引文献40

同被引文献15

  • 1Paul K Harmer, Paul D Williams, et al. An Artificial Immune System Architecture for Computer Security Applications. IEEE Transactions on Evolutionary Computation. 2002,63:65- 68
  • 2L. N. de Castro, J. I. Timmis. Artificial immune systems as a novel soft computing paradigm. Soft Computing,2003,7 (8) :526-544
  • 3FabioA. Gonzalez, Dipankar Dasgupta. Anomaly Detection Using Real- Valued Negative Selection. Genetic Programming and Evolvable Machines, 2003,4(4) :383 -403
  • 4Jon Timmis, Mark Neal, John Hunt. An artificial immune system for data analysis. BioSystems, 2000. 55, (55) :143 - 150
  • 5HOFMEYR S, FORREST S. Architecture for an Artificial Immune System. Evolutionary Computation. 2000,84,8 (4) :443 -473
  • 6A Tarakanov, D Dasgupta. A formal model of an artificial immune system. BioSystems, 2000,55, 55:151 - 158
  • 7Christina Warrender, Stephanie Forrest, Lee Segel. Homeostasis of peripheral immune effectors. Bulletin of Mathematical Biology, 2004,66(6) :1493 - 1514
  • 8S. A. Hofmeyr and S. Forrest. Architecture for an Artificial Immune System. Evolutionary Computation Journal,2000.
  • 9The Research and Progress of Artificial Immune System Algorithms. Proceedings of 6th International Symposium on Test and Measurement( Volume 7 ) ,2005.
  • 10Paull TF, Rogakou EP, Yamazaki V,et al. A critical role for histone H2AX in recruitment of repair factors to nuclear oci after DNA damage. Curr Biol,2000. 10:886 - 895

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部