期刊文献+

基于RBF神经网络的难加工材料高速铣削粗糙度预报研究 被引量:4

Prediction of Surface Roughness of Difficult-to-cut Material by HSM Based on RBF Neural Network
下载PDF
导出
摘要 表面粗糙度的预报是切削加工质量分析的重要研究方向。本文运用RBF神经网络建立了粗糙度预测模型,将预报结果与试验真值以及由经验公式的处理结果进行对比验证,结果表明此方法可行,为切削参数优化和数据库研制提供了依据。 Prediction of surface roughness has become an important trend of cutting quality analysis. In this paper, RBF neural network is used to establish the prediction model of surface roughness. Compared with measured data and data from regression analysis, the result of prediction using RBF neural network indicates its feasibility, which provides reference for the optimization of cutting parameters and the development of database.
出处 《工具技术》 北大核心 2008年第3期35-37,共3页 Tool Engineering
基金 天津市高等学校科技发展基金资助项目(项目编号:20041108)
关键词 难加工材料 高速铣削 神经网络 粗糙度 预报 diffficult-to-cut material, HSM, neural network, roughness, prediction
  • 相关文献

参考文献6

  • 1王素玉,赵军,艾兴,吕志杰.高速切削表面粗糙度理论研究综述[J].机械工程师,2004(10):3-6. 被引量:58
  • 2M Alauddin, et al. Computer-aided analysis of a surface roughness model for end milling. Journal of Material Processing Technology, 1995(55) : 123 - 127.
  • 3W S Lin, et al. Modeling the surface roughness and cutting force for tunfing. Journal of Material Processing Technology, 2001 (108) :286- 293.
  • 4Van lutterveh C A, et al. Present situation and future trends in modeling of machining operations. Annals of the CIRP, 1998, 47(2) :587- 626.
  • 5Benardos P G , Vosniakos G C. Prediction of surface roughness in CNC face milling using neural networks and Taugchi' s design of experiments. Robotics and Computer Integrated Manufacturing, 2002 (18) : 343 - 354.
  • 6E O Ezugwu, D A Fadare, et al. Modelling the correlation between cutting and process parameters in high- speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools & Manufacture,2005(45) : 1375 - 1385.

二级参考文献23

  • 1Tugrul Ozel, T Altan. Modeling of high speed machining processes for predicting tool forces, tool stresses and temperatures using FEM simulations [ A ]. Proceedings of the CIRP international workshop on modeling of machining operations[C]. Atlanta, Georgi
  • 2J. D. Theile, S. N. Melkote. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel [ J ]. Journal of Material Processing Technology, 1999 ,(94): 216-226.
  • 3P. G. Benardos, G. C. Vosniakos. Prediction of surface roughness in CNC face milling using neural networks and Taguchi′s design of experiments [ J ]. Robotics and Computer Integrated Manufacturing. 2002,(18): 343-354.
  • 4Y.K. Chou, C. J. Evans. Tool wear mechanism in continuous cutting of hardened tool steels [ J ]. Wear, 1997, (212): 59-65.
  • 5W. S. Lin, B. Y. Lee, C. L. Wu. Modeling the surface roughness and cutting force for turning [J ]. Journal of Material Processing Technology, 2001, (108): 286-293.
  • 6K. Y. Lee, et al. Simulation of surface roughness and profile in high speed end milling [ J]. Journal of Material Processing Technology, 2001, (113): 410-415.
  • 7Y. Mizugaki, M. Hao, K. Kikkawa. Geometric generating mechanism of machined surface by ball-nosed end milling[J]. Annals of the CIRP, 2001, 50 (1): 69-72.
  • 8B. H. Kim, C. N. Chu. Texture prediction of milled surfaces using texture superposition method [ J ]. Computer-Aided Design,1999 ,(31): 485-494.
  • 9Van lultervelt C. A. et al. Present situation and future trends in modeling of machining operations [ J ]. Annals of the CIRP,1998, 47(2): 587-626.
  • 10E. J. A. Armargo, R. H. Brown. The machining of metals[M]. Prentice-Hall, Englewood Cliffs, NJ, 1976.

共引文献57

同被引文献27

  • 1王丹民,李华德,周建龙,梅兵.热轧带钢力学性能预测模型及其应用[J].北京科技大学学报,2006,28(7):687-690. 被引量:13
  • 2方沂,李凤泉.基于人工神经网络的高速加工表面粗糙度预测模型[J].工具技术,2006,40(11):78-80. 被引量:5
  • 3李亚非,谢竹生.在机床上检测表面粗糙度的试验研究[J].机床与液压,2007,35(7):119-121. 被引量:3
  • 4陈志祥 张鸿海 陈日曜.精密切削加工表面粗糙度的在线检测.华中工学院学报,1988,16(1):123-126.
  • 5张鸿海 陈志祥 陈日曜.光散射法测量表面粗糙度的研究.华中工学院学报,1987,15(3):97-102.
  • 6Sarcjay C. A study of surface roughness in drilling using mathematical analysis and neural networks [ J ]. Int J Adv Manuf Technol,2006,29 : 846 - 852.
  • 7Zhang J Z. The development of an in-process surface roughness adaptive control system in milling operation [ J ]. Int J Adv Manuf Technol,2007,31:877 - 887.
  • 8Huang B. An in-process neural network-based surface roughness prediction(INN-SRP) system using a dynamometer in end milling operations [ J ]. Int J Adv Manuf Technol 2003(21 ) :339 -347.
  • 9Tsai Y H. An in-process surface recognition system based on neural networks in end milling cutting operations [ J ]. Int Mach Tools & Manuf, 1999,39:583 - 605.
  • 10Kohli A. A neural-network-based methodology for the prediction of surface roughness in a turning process[ J]. Int J Adv Manuf Technol,2005,25 : 118 - 129.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部