期刊文献+

基于牛顿迭代混沌特性的机构综合新方法 被引量:4

New approach for mechanism synthesis based on the chaotic property of Newton iteration
下载PDF
导出
摘要 为进一步探索混沌理论在解决实际工程问题中的应用,提出了基于牛顿迭代混沌特性的平面四杆机构运动综合问题的快速求解方法.借助计算机代数系统将平面四杆机构的综合问题归结为一元多项式方程的求解,并利用牛顿迭代法的混沌特性快速找出多项式方程的全部解,取其中的实数解代入机构综合的数学模型,即可求出其他机构参数并进行优化设计.由刚体导引的铰链四杆机构和曲柄滑块机构综合的实例证明了该方法具有简单、快速、求解过程可视等优点. A fast solving method of mechanism synthesis by utilizing the chaotic property of Newton iteration was put forward for further exploring the application of chaos theory in solving practical engineeringoriented problems. With the computer symbolic manipulating technique, a one variable polynomial equation was derived for the closed form solution of a planar four bar mechanism, and all the roots of the equation could be easily located based on the chaotic property of Newton iteration. Then other parameters of the mechanism were easily obtained by substituting the real roots of the one variable polynomial equation into the mathematical formulae of the mechanism synthesis problem. And the design of the planar mechanism could be optimized further. The successful applications in the syntheses of a four-bar hinge mechanism and a crank-slider mechanism show that the proposed method is simple, efficient and its iteration process is visible.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第3期369-372,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50705084 50505044)
关键词 牛顿迭代法 混沌 JULIA集 机构综合 Newton iteration method chaos Julia set mechanism synthesis
  • 相关文献

参考文献8

二级参考文献19

  • 1付金元,陈永.刚体导引的平面四杆机构综合的新解法[J].机械工程学报,1996,32(2):40-46. 被引量:13
  • 2XIEjin CHEN Yong(谢进 陈永).Chaos theory amp four-linkages mechanism synthesis[J].J of Mech Sci amp Tch(机械科学与技术),2000,19(4):524-526.
  • 3卢侃等编译.混动动力学[M].上海:上海远东出版社,1990..
  • 4谢泗维,平面连杆机构分析与综合,1986年
  • 5梁崇高,平面连杆机构的计算机设计,1993年
  • 6Tong S H,Mechanism and Machine Theory,1992年,27卷,143页
  • 7周晋康,四铰机构计算机图解算法.3,1992年
  • 8曹龙华,平面连杆机构综合,1990年
  • 9Jovanovic V T, Kazerounian K. Using Chaos to Obtain Global Solutions in Computational Kinematis. Transactions of the ASME, Journal of Mechanical Design, 1998, 120(7): 299-304
  • 10Kyle Kneis. Julia sets for the super-Newton method, Cauchy's method, and Halley's method. Choas,2001, 11(2): 359-370

共引文献84

同被引文献39

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部