期刊文献+

基于模糊多传感器数据融合的目标跟踪系统 被引量:1

Study on Target Tracking System based on Fuzzy Multi-sensor Data Fusion
下载PDF
导出
摘要 为了克服使用单个传感器的局限性,目标跟踪系统中引入了多传感器数据融合(MSDF)算法。MSDF能有效减小污染传感器测量量的噪声,又可排除估计过程中的无效测量量。它既能处理线性传感器的数据融合问题,又能处理含噪声的非线性传感器的数据融合问题。为了克服缺乏目标运动的前期信息的不足,目标跟踪系统中还运用了模糊运动学过程模型。因此,尽管缺乏有关目标运动及估计过程中所包含的传感器前期统计信息,该目标跟踪系统的性能却与基于已知目标精确过程模型的广义卡尔曼滤波器的目标跟踪系统相当。 Multi-sensor data fusion (MSDF) algorithm is introduced to the target tracking system in order to overcome limitations of the single sensor. The MSDF can reduce noise of sensor measurement and eliminate inactive measurement in the estimation process. The MSDF can process not only data fusion of the linear sensor, but also data fusion of nonlinear sensor with noise. Process model of fuzzy kinematics is also applied to the target tracking system in order to overcome insufficiency of preceding information of target motion. Performance of the target tracking system is equivalent to that of target tracking system with generalized Kalman filter based on precise process model of the known target.
作者 耿峰 祝小平
出处 《火力与指挥控制》 CSCD 北大核心 2008年第3期93-96,共4页 Fire Control & Command Control
关键词 多传器数据融合 目标跟踪 卡尔曼滤波 模糊方法 multi-sensor data fusion, target tracking, Kalman filter, fuzzy method
  • 相关文献

参考文献7

  • 1Dolye R S,Harris C J. Multi-sensor Data Fusion for Helicopter Guidance using Neuro-fuzzy Estimation Algorithms [J]. The Aeronautical Journal, 1996 (6) : 241-251.
  • 2McGinnity S, Irwin G. Nonlinear State Estimation using Fuzzy Local Linear Models [J]. International Journal of Systems Science, 1997,28 (7) : 643-656.
  • 3Harris C J. Linearization and State Estimation of Unknown Discrete-Time Nonlinear Dynamic Systems using Recurrent Neuro-fuzzy Networks [J]. IEEE Transactions on Systems, Man,and Cybernetics, Part B, 1999, 29 (6): 802- 817.
  • 4Bar-Shalom Y, Fortmann T E. Tracking and Data Association [M]. New York : Academic Press, 1988.
  • 5Kalata P R. The Tracking Index: A General Parameter for α-β and α-β-γ Target Trackers [J]. IEEE Transactions on Aerospace and Electronics Systems, 1984,20(2) : 174-182.
  • 6Arcasoy C C. The Tracking Filter with a Noisy Jerk as the Maneuver Model: Frequency Domain Solution″[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996,32 (3) : 1170-1174.
  • 7Gray I E, Murray W. A Derivation of an Analytic Express for the Tracking Index for the Alpha-Beta- Gamma Filter [ J ]. IEEE Transactions on Aerosopace and Electronic Systems, 1993, 29(3): 1064-1065.

同被引文献16

  • 1张晶炜,何友,熊伟.集中式多传感器模糊联合概率数据互联算法[J].清华大学学报(自然科学版),2007,47(7):1188-1192. 被引量:1
  • 2韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].2版.北京:清华大学出版社,2010.
  • 3何友,修建娟,关欣.雷达数据处理及应用[M].3版.北京:电子工业出版社,2013:257-259.
  • 4何友,王国宏,陆大金,等.多传感器信息融合及应用[M].2版.北京:电子工业出版社,2010.
  • 5Y BAR- SHALOM. Multitarget- multisensor tracking: ad- vanced application[M]. University of Connecticut: Artech House, 1990: 1-6.
  • 6GAO X B, CHEN J G,TAO D C,et al. Multi-sensor cen- tralized fusion without measurement noise covariance by variational bayesian approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 201 l, 47.( 1 ) : 718- 727.
  • 7Y BAR-SHALOM. Multitarget multisensor tracking: prin- ciples and techniques[M]. Stors C T: YBS Publishing, 1995.
  • 8B, THARMARASA R, KIRUBARA- JAN T, et al. Multiple detection probabilistic data associa- tion filter for multistatic target tracking[C]//Proceedings of the 14 International Conference on Information Fu- sion. Chicago, 2011 : 102-106.
  • 9O' NEIL S D, PAO L Y. Multisensor fusion algorithm for tracking[C]//Ameriean Control Conference. San Francis- co, 1993: 859-863.
  • 10PAO L Y, FREI C W. A comparison of parallel and se-quentia! implementation of a multisensor tracking algo- rithm[C]//American control Conference. Seattle, 1995: 1683-1687.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部