期刊文献+

一类流行病模型的后向分支——带接种疫苗的两病毒模型 被引量:3

The Backward Bifurcation of a Kind of Two-Strain Epidemic Model With Vaccination
下载PDF
导出
摘要 建立一类具有两病毒和接种疫苗的SEIJV流行病模型。假设疫苗对病毒2具有完全保护作用,对病毒1具有部分保护作用,即接种疫苗的个体与被病毒1感染的个体接触后有染病的可能。在假设病毒1可以以一定比率变异为病毒2情况下,给出再生数的表达式,讨论了无病平衡点、病毒1占优平衡点、病毒2占优平衡点以及地方病平衡点的存在性条件,并在一定条件下证明了后向分支的存在性。 A kind of two-strain SEIJV epidemic model with two-strain and vaecination was set up. This vaccine provides complete against strain 2. but only partial against strain 1 or the vaccinated inclividual may bc infected by strain 1. It is also assumed that strain 1 can mutate into stran 2 at a rate. The reproduction numbers of this model were given. The existence of stability of these equilibria are presented. Under certain conditions, it shows that this model exhibits have backward bifurcations.
出处 《石油化工高等学校学报》 CAS 2008年第1期96-99,共4页 Journal of Petrochemical Universities
基金 辽宁省教育厅高校科研项目(2004F100) 辽宁石油化工大学重点学科建设资助项目(K200409)
关键词 流行病模型 接种疫苗 变异 再生数 Epidemic model Vaccination Mutation: Reproduction
  • 相关文献

参考文献10

  • 1Hodeler K P, Van den Driessche P. Backward bifurcation in epidemic control[J]. Math. biosci. ,1997,146:15-35.
  • 2Kribs-Zaleta C M. Core recruitment effects in SIS models with constant total populations[J]. Math. biosci. ,1999,160 : 109-158.
  • 3Dushoff J, Huang W, Chavez C C. Backward bifurcation and catastrophe in simple models of fatal disease[J]. Math. biosci, 1998,36:227-248.
  • 4Kribs- Zaieta C M, Velasco- Hernandez J X. A simple vaccination model with multiple endemic states[J]. Math. biosci. , 2000,164:183-201.
  • 5Greenhalgh D, Diekmann O, de Jong Mark C M. Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity[J]. Math. biosci. , 2000,165:1-25.
  • 6Kribs- Zaleta C M, Martcheva M. Vaccination strategies and backward bifurcation in an age-since-infection structured model[J]. Math. biosci. , 2002,177:317-332.
  • 7Juan Zhang, Zhien Ma. Dynamics behavior of the SEIR epidemic model with the saturating contact rate[J]. Math. biosci. , 2003,185:15-32.
  • 8Culshaw R, Ruan S. A delay differential equation model of HIV infection of T-cells[J]. Math. biosci. ,2000,165:27-39.
  • 9李建全.具有预防接种流行病的模型[D].西安:西安交通大学,2001.
  • 10耿贵珍,佟毅.GARCH模型的相依性[J].辽宁石油化工大学学报,2007,27(3):93-95. 被引量:4

二级参考文献6

共引文献3

同被引文献6

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部