摘要
建立一类具有两病毒和接种疫苗的SEIJV流行病模型。假设疫苗对病毒2具有完全保护作用,对病毒1具有部分保护作用,即接种疫苗的个体与被病毒1感染的个体接触后有染病的可能。在假设病毒1可以以一定比率变异为病毒2情况下,给出再生数的表达式,讨论了无病平衡点、病毒1占优平衡点、病毒2占优平衡点以及地方病平衡点的存在性条件,并在一定条件下证明了后向分支的存在性。
A kind of two-strain SEIJV epidemic model with two-strain and vaecination was set up. This vaccine provides complete against strain 2. but only partial against strain 1 or the vaccinated inclividual may bc infected by strain 1. It is also assumed that strain 1 can mutate into stran 2 at a rate. The reproduction numbers of this model were given. The existence of stability of these equilibria are presented. Under certain conditions, it shows that this model exhibits have backward bifurcations.
出处
《石油化工高等学校学报》
CAS
2008年第1期96-99,共4页
Journal of Petrochemical Universities
基金
辽宁省教育厅高校科研项目(2004F100)
辽宁石油化工大学重点学科建设资助项目(K200409)
关键词
流行病模型
接种疫苗
变异
再生数
Epidemic model
Vaccination
Mutation: Reproduction