期刊文献+

小波系数与尺度的关系

Relations of Coefficients of Wavelet Transform and Scale
下载PDF
导出
摘要 在总结了函数空间L2(R)与小波变换系数空间l2的关系的基础上,分析了Cn,α(R)空间的函数的小波变换系数的模极大值随尺度变化的关系,给出了一个比引理的条件较弱的条件,并得到了相应的结论.另外,在小波基函数满足一定正规性,被变换的函数有无穷阶导数的情况时,分析了小波变换系数的模极大值与尺度的变化关系.这为用小波变换分析函数或信号的特性提供了理论基础. Based on analyzing the relation between the space L2(R) and wavelet transform coefficients space l^2 , a condition than lemma is presented with the same conclusions as lemma, with respect to the relation of the wavelet transform coefficients of a function belonging to the space Cn,α(R) varying with the scale. Additionally, the relation of the wavelet transform coefficients varying with the scale is obtained on the condition that the wavelet bases functions subject to certain regularity and transformed functions are differential arbitrarily. These provide theory bases for analyzing properties of function or signal by wavelet analysis.
作者 郑小洋
出处 《重庆工学院学报(自然科学版)》 2008年第2期47-51,共5页 Journal of Chongqing Institute of Technology
基金 重庆市高等教育教学改革研究项目(0633121)
关键词 尺度 小波变换系数模极大值 指数为α的Hlder连续 Scale modulus maximal of wavelet transform coefficients exponentiala- Holder continuity
  • 相关文献

参考文献6

  • 1Alpert B K. A Class of Bases in L^2 for Sparse Representation of Integral Operators[J] .SIAM J Math Anal, 1993,24:246- 262.
  • 2Berlkin G. On the Representation of Operators in Bases of Compactly Supported Wavelets[J]. SIAM J Math Anal, 1992(6) : 1716 - 1739.
  • 3Karrakchou M. Scalogram or wavelet representation: Application to the determination of occlusion point for measurement of pulmonary capillary pressure[Z]. IEEE Proc ICASSP, 1992:2429- 2430.
  • 4LI Cui-wei, ZHENG Chong-xun, YUAN Chao-wei. Detection of ECG characteristic points using wavelet transform[J]. IEEE Trans on BME, 1995,42( 1 ) : 21 - 28.
  • 5Maleknejad K N, Aghazadeh F. Molapourasl. Numerical solution of Fredholm integral equation of the first kind with collocation method and estimation of error bound[J]. Appl Math Comput, 2006,179:352- 359.
  • 6Alpert B, Beylkin G, Gines D, et al. Adaptive Solution Partial Differential Equations in Multiwavelet Bases[J]. Comp Phys,2002, 182:149- 190.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部