期刊文献+

正交各向异性涂层结构温度场计算(英文) 被引量:1

Boundary element analysis of temperature field in orthotropic coating-structures
下载PDF
导出
摘要 边界积分方程中的几乎奇异积分计算难题阻碍了边界元法在涂层结构中的应用.针对此,给出了正交各向异性温度场边界元法中几乎奇异积分的正则化算法,并将其应用于分析涂层结构的温度场.首先计算了涂层和基体为同种材料时涂层结构内的温度场,并与精确解比较来验证该方法的正确性,然后计算了涂层和基体为不同材料时正交各向异性涂层结构内的温度场.数值算例表明,同常规边界元法比较,该方法可以计算更薄涂层内的温度场. The nearly singular integrals in the boundary integral equation have long handicapped the application of the boundary element method in coating-structures. Analytical integral formulations were applied to analyzing the temperature field in orthotropic coating-structures. Because analytical solutions are not available for different coating/substrate combinations, the temperature distribution in the coating-structures with the same mediums in the coating and substrate was investigated to verify the accuracy of the present method. The method was then utilized to determine the temperature field of the coating in the orthotropic coating-structures. Numerical examples demonstrate that the present method can model the thermal field in much thinner coating compared with the conventional method.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第3期320-325,共6页 JUSTC
基金 Supported by the Doctorial Program Foundation of China(20050359009) the Science Research Foundation of Hefei University of Technology(080802F)
关键词 边界元法 温度场 正交各向异性 涂层结构 boundary element method temperature field orthotropic coating-structures
  • 相关文献

参考文献10

  • 1Du F, Lovell M R, WU T W. Boundary element method analysis of temperature fields in coated cutting tools[J].International Journal of Solids and Structures, 2001, 38(26):4557-4570.
  • 2Njiwa R K, von Stebut J. Boundary element numerical modeling as a surface engineering tool: application to very thin coatings[J].Surface and Coatings Technology, 1999,116-119:573-579.
  • 3Brebbia C A, Telles J C, Wrobel L C. Boundary Element Techniques [M]. Berlin, Heidelberg:Springer-Verlag, 1984.
  • 4Granados J J, Gallego R. Regularization of nearly hypersingular integrals in the boundary element method[J].Engineering Analysis with Boundary Elements, 2001, 25(3):165-184.
  • 5Luo J F, Liu Y J, Berger E J. Interracial stress analysis for multi-coating systems using an advanced boundary element method[J].Computational Mechanics, 2000, 24(6) :448-455.
  • 6Chen X L, Liu Y J. Thermal stress analysis of multilayer thin films and coatings by an advanced boundary element method[J].Computer Modeling in Engineering & Sciences, 2001, 2(3):337-350.
  • 7Chen H B, Lu P, Huang M G, et al. An effective method for finding values on and near boundaries in the elastic BEM[J].Computers and Structures, 1998,69(4):421-431.
  • 8牛忠荣,王左辉,胡宗军,周焕林.二维边界元法中几乎奇异积分的解析法[J].工程力学,2004,21(6):113-117. 被引量:13
  • 9Niu Z R, Zhou H L. The natural boundary integral equation in potential problems and regularization of the hypersingular integral[J].Computers and Structures, 2004, 82(2-3):315-323.
  • 10周焕林,牛忠荣,王秀喜,程长征.正交各向异性位势问题边界元法中几乎奇异积分的解析算法[J].应用力学学报,2005,22(2):193-197. 被引量:8

二级参考文献15

  • 1Huang Q, Cruse TA. Some notes on singular integral techniques BE analysis[J]. Int. J. Numer Methods Eng, 1993, 36(15): 2643-2659.
  • 2Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration variables in computation of singular integrals in BEM[J]. Int. J. Numer Methods Eng, 2000, 47: 1263-1283.
  • 3Ma H, Kamiya N. A general algorithm for accurate computation of field variables and its derivatives near the boundary in BEM [J]. Engineering Analysis with Boundary Elements, 2001, 25: 833-841.
  • 4Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two-and three-dimensional elasticity [J]. Computational Mechanics, 2002, 29: 277-288.
  • 5Lutz Earlin. Exact gaussian quadrature methods for near-singular integrals in the boundary element method [J]. Engineering Analysis with Boundary Elements, 1992, 9: 233-245.
  • 6Liu Yijun. Analysis of shell-like structures by the boundary element method based on 3-D elasticity: formulation and verification[J]. Int. J. Numer Methods Eng, 1998, 41: 541-558.
  • 7Luo JF, Liu YJ, Berger EJ. Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method [J]. Computational Mechanics, 1998, 22: 404-412.
  • 8Liu Y J, Fan H. On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes [J]. Engineering Analysis with Boundary Elements, 2001, 25(2): 77-91.
  • 9Brebbia CA, Telles JC, Wrobel LC, Boundary Element Techniques[M], Berlin,Heidelberg: Springer-Verlag, 1984.
  • 10Tanaka M, Sladek V, Sladek J. Regularization techniques applied to BEM[J]. Appl. Mech. Rev, 1994,47(10):457-499.

共引文献18

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部