期刊文献+

基于贝叶斯决策的机内测试虚警滤波技术 被引量:3

Built-in test false alarm filtering technique based on Bayesian decision
下载PDF
导出
摘要 提出了一种将贝叶斯决策用于机内测试(BIT)系统的虚警滤波方法,诊断的BIT系统包括正常、瞬态、间歇和故障四类状态,利用最小最大决策法确定这四类状态的先验概率,并建立相应的贝叶斯风险决策表.以机载电源的机内测试系统为例进行研究,为每个诊断模块建立相应的贝叶斯决策器,通过支持向量机识别出有异常的可更换模块后,启动相应的决策器对该模块的BIT状态进行决策.结果表明,该方法能够识别出系统中的瞬态和间歇故障,可有效降低BIT虚警发生的概率. A built-in test (BIT) false alarm filter technique based on Bayesian decision is proposed in order to reduce the high false alarm rate and improve the accuracy of BIT diagnostic system. Unlike the conventional BIT technique, the proposed method divides the states of a system into 4 states, that is normal state, transient state, intermittent state and faulty state, employs min-max principle to calculate the prior probabilities of the four states, and sets up the corresponding risk decision table. The proposed method is applied to the BIT system of aircraft electrical power system, and when an abnormal power module is identified by the support vector machine (SVM) , a corresponding Bayesian decision machine performs to determine the real state of this identified module. The experimental results have shown that the proposed method can identify the transient fault and intermittent fault effectively, which filters the BIT false alarm of aircraft electrical power system.
作者 刘震 林辉
出处 《系统工程学报》 CSCD 北大核心 2008年第1期125-128,共4页 Journal of Systems Engineering
基金 航空科学基金(04F53036)
关键词 贝叶斯决策 机内测试 虚警 机载电源 风险决策 Bayesian decision built in test false alarm aircraft electrical power system risk decision
  • 相关文献

参考文献4

  • 1Drees R, Young N. Role of BIT in support system maintenance and availability[J]. IEEE AES Magazine, 2004, 19(8) : 3-7.
  • 2Ayistock F, Elerin L, Hintz J, et al. Neural Network False Ala~n Filter ( Volume 1) [ R ]. 美国国防报告, ADA293097, USA, 1994.
  • 3Allen D. Probabilities associated with a built-in-test system, focus on false alarms[ A]. Proceedings of IEEE Systems Readiness Technology Conference, 2003. 643-645.
  • 4John W S, Mark A K. A Bayesian approach to diagnosis and prognosis using built-in test[ J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1003-1017.

同被引文献37

  • 1甘传付,黄允华.Bayes信息融合方法在雷达故障诊断中的应用[J].火力与指挥控制,2004,29(5):94-96. 被引量:1
  • 2黎峰.空中交通警戒和防撞系统的发展历程[J].中国民用航空,2004(10):81-83. 被引量:9
  • 3郭晓静,罗云林.基于故障树与神经网络的飞机TCAS故障诊断研究[A].中国控制与决策学术年会论文集,2006.
  • 4许体仁.航空电子设备对飞行安全的保障作用及其发展途径探讨[A].加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C],2002:47-52.
  • 5Williamson T,Spencer N A.Development and operation of the traf-fic alert and collision avoidance system(TCAS)[J].Proceedingsof the IEEE,1989,77(11):1735-1744.
  • 6王世锦,孙樊荣.谈空中交通警戒与防撞系统的缺陷[A].第二届中国航空学会青年科技论坛文集[C],2006:601-606.
  • 7史雪岩.机载防撞系统(TCAS)分析及典型故障[EB/OL].www.china-cam.cn,2008.
  • 8Reich P G.Analysis of Long-Range Air Traffic Systems:Separa-tion Standards—I[J].Journal of Navigation,1996,19:88-98.
  • 9Fulton N L.Airspace design:Towards a rigorous specification ofcomplexity based on computational geometry[J].AeronauticalJournal,1999,103:75-844.
  • 10Chiang,Yi-Jen,Klosowski J,Lee C,et al.Geometric algo-rithms for conflict detection/resolution in air traffic management[A].36th IEEE Conference on Decision and Control[C].1997:1835-1840.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部