期刊文献+

基于偏好的多目标遗传算法 被引量:2

Multi-objective Genetic Algorithm based on preference
下载PDF
导出
摘要 多目标优化问题中,人们往往只是对目标空间的某一区域感兴趣,因此这就需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法权值法无法满足这种需求而且不能处理目标空间是非凸的情况,遗传算法虽然是现在公认的处理多目标优化问题比较有效的方法,但遗传算法是在目标空间内进行全空间寻优,因此最终得到的Pareto解是均匀分布的,这样遗传算法也不能满足人们的这一要求。针对这个问题提出了基于偏好的多目标遗传算法,把个人偏好加到优化过程中,利用偏好信息来引导优化方向,通过仿真把该算法和权值法、NSGA-II进行比较,结果证明了该算法的可行性和有效性。 In multi-objective optimization problem,many people are only interested in a special part of the objective space,so which should has enough solutions.Weighted method cannot satisfy this demand and in the same time it cannot deal with nonconvex case; although genetic algorithm is an ideal method for multi-objective optimization; its solutions are uniformly distributed in the objective space,so it also cannot.Due to this question,we bring forward a new multi-objective genetic algorithm incorporated preference into optimization process to direct optimization,and compare this algorithm with weighted method and NSGA-Ⅱ through simulation,which validates this algorithm's feasibility and advantage.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第9期24-26,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674070)
关键词 多目标优化 遗传算法 偏好 权值法 NSGA—Ⅱ multi-objective optimization Genetic Algorithm preference weighted method NSGA-Ⅱ
  • 相关文献

参考文献7

二级参考文献30

  • 1马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486. 被引量:23
  • 2张宪民.连杆机构多目标综合平衡中最佳非劣解的模糊识别[J].机械科学与技术,1997,16(1):105-110. 被引量:2
  • 3Zitzler E,Thiele L.An evolutionary alogrithms for multiobjective optimization:the strength Pareto approach[R].TIK-Report,No.43,1998
  • 4Carlos C,Helio J.A non-generational genetic alorithm for mutiobjective optimization[C]// 2000 Congress on Evolutionary Computation.San Diego,California:[s.n.],2000:172-179
  • 5Carlos A.An updated survey of evolutionary multiobjective optimization techniques:state of the art and future trends[C]// Proceedings of the 1999 Congress on Evolutionary Computation CEC99.Washington,DC:[s.n.],1999:3-13
  • 6Kalynmoy D,Amrit P,Meyarivan T.Constrained test problems for multiobjective evolutionary optimization[R].KanGAL Repart NO.200002,2000
  • 7Shinya W,Tomoyuki H,Mitsunori M.Neighborhood cultivation genetic algorithm for multi-objective optimization problems[C]// Proceedings of 4th Asia-Pacific Conference on SEAL,2002:198-202
  • 8胡殹达.实用多目标最优化[M].上海:上海科技出版社,1990:15-60
  • 9Van Veldhuizen DA, Lamont GB. Multi-Objective evolutionary algorithms: Analyzing the State-of-the-Art. IEEE Trans. on Evolutionary Computation, 2000,8(2): 125-147.
  • 10Coello CAC. List of Reference on Evolutionary Multi-objective Optimization. http://www.lania.mx/~ccoello/EMOO/EMOObib.html.

共引文献29

同被引文献18

  • 1JELLA PFEIFFER, ULI GOLLE, FRANZ ROTHLAUF. Reference Point Based Multibjective Evolutionary Algorithms for Group Decisions[C]. Genetic and Evolutionary Computation Conference (GECCO' 2008), ACM Press, Atlanta, USA, 2008 : 697-704.
  • 2KALYANMOY DEB ,J SUMDER. Reference Point Based Multi-Objective Optimization Using Evolutionm-y Algorithms [ C]. Genetic and Evolutionary Computation Conference (GECCO' 2006), ACM Press, Seattle, Washington, USA, 2006 (1) : 635-642.
  • 3KALYANMOY DEB,ABHAY KUMAR. Light Beam Search Based Multi-Objective Optimization using Evolutionary Algorithms[C]. IEEE Congress on Evolutionary Computation (CEC'2007), IEEE Press, Singapore,2007:2125-2132.
  • 4K DEB, A KUMAR. Interactive evolutionary multi-objective optimization and decision-making using reference direction method[C]. Genetic and Evolutionary Computation Conference (GECCO), ACM Press, 2007:781-788.
  • 5W R M U K WICKRAMASINGHE, X LI. Integrating User Preferencm with Particle Swarms for Multiobjective Optimization[C]. Genetic and Evolutionary Computation Conference (GECCO'2008), ACM Press, Atlanta, USA, 2008:745- 752.
  • 6F CHICLANAL, E HERRERA-VIEDMA, R A PEREIRA. Preferences and Consistency Issues in Group Decision Making [C]. Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Springer Berlin/HeidelbeIg, 2008 (220) : 219-237.
  • 7MA Jian ,AAN Zhi-Ping,JIANG Yah-ping, MAO Ji-ye. An optimization approach to multipermn decision making based on different formats of preference information[C]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2006,36(5) : 876-889.
  • 8DEB K, AGRAWAL S, PRATAP A, et al. A fast and elitist multiobjective genetic algorithm: NSGA II [J]. IEEE Tranmctions on Evolutionary Computation,2002,6(2) :182-197.
  • 9REYES-SIERRA M,COELLO C A C.Multi-objective particle swarm optimizers:a survey of the state-of-the-art[J].International Journal of Computational Intelligence Research,2006,2(3):287-308.
  • 10DEB K,SUNDAR J.Reference point based multi-objective optimization using evolutionary algorithms[J].International Journal of Computational Intelligence Research,2006,2(3):273-286.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部