摘要
为了提高在动态环境下追踪变化的极点的可靠性和精确性的能力,避免算法收敛于一个最优解,提出了一种改进的小生境微粒群算法。使用DF1(Dynamic Function1)生成的复杂动态环境对这种算法进行了验证,并与经典的APSO(Adaptive Particle Swarm Optimizer)算法进行了对比,实验结果表明了该算法的有效性。
The purpose of this paper is to present a modified Panicle Swarm Optimization(PSO ) algorithm applied to the complex dynamic environment.The method presented is defined as Improve Niche Panicle Swarm Optimizer( IN-PSO ).It can improve the reliability and accuracy while tracking dynamic pole in dynamic environment and avoid converge to a optimality.The environment used in these experiments is generated by Dynamic Function #1(DF1).The results of the experiments elucidate that INPSO is more adaptive than Adaptive Panicle Swarm Optimizer( APSO ).
出处
《计算机工程与应用》
CSCD
北大核心
2008年第9期51-54,共4页
Computer Engineering and Applications
基金
湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.06JJ5106)