期刊文献+

基于复拟随机样本的统计学习理论的理论基础 被引量:11

Theoretical foundations of statistical learning theory of complex quasi-random samples
下载PDF
导出
摘要 引入复拟(概率)随机变量,准范数的定义。给出了复拟随机变量的期望和方差的概念及若干性质;证明了基于复拟随机变量的马尔可夫不等式,契比雪夫不等式和辛钦大数定律;提出了拟概率空间中复经验风险泛函、复期望风险泛函以及复经验风险最小化原则等定义。证明并讨论了基于复拟随机样本的统计学习理论的关键定理和学习过程一致收敛速度的界,为系统建立基于复拟随机样本的统计学习理论奠定了理论基础。 Firstly,the definitions of complex quasi-random variable and primary norm are introduced.Next the concepts and some properties of the mathematical expectation and variance of complex quasi-random variables are provided.Secondly,for complex quasi-random variables we discuss a number of fundamental concepts such as e.g.,Markov's inequalities,Chebyshev's inequalities and a Khinchine's law of large numbers.Finally,the definitions of the complex empirical risk functional,the complex expected risk functional,and complex empirical risk minimization principle on quasi-probability measure space are proposed.Then the key theorem of learning theory based on complex quasi-random samples is proved,and the bounds on the rate of uniform convergence of learning process are constructed.The investigations will help lay essential theoretical foundations for the systematic and comprehensive development of the complex quasi-statistical learning theory.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第9期82-86,93,共6页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773062,No.60673045) 教育部科学技术研究重点项目(the Key Scientific and Technical Research Project of Ministry of Education of China under Grant No.206012) 河北省教育厅科研计划重点项目(the Key Scientific Research Project of Department of Hebei of Education of China under Grant No.2005001D)
关键词 复拟随机变量 准范数 复经验风险最小化原则 关键定理 收敛速度的界 神经网络 complex quasi-random variable primary norm complex empirical risk minimization principle key theorem the bounds on the rate of convergence neural network
  • 相关文献

参考文献18

  • 1Vapnik V N,The nature of statistical learning theory[M].New York: Springcr-Vcrlag, 1995.
  • 2Vapnik V N.Statistical learning theory[M].New York:A Wiley-Interscience Publication, 1998.
  • 3Vapnik V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks, 1999,10(5 ) :988-999.
  • 4Evgeniou T,Poggio T,Pontil M,et al.Regularization and statistical learning theory for data analysis[J].Computational Statistics & Data Analysis, 2002,38 : 421-432.
  • 5Wechsler H,Duric Z,Li F,et al.Motion estimation using statistical learning theory[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(4 ) : 466-478.
  • 6Brunato M,Battiti R.Statistical learning theory for location fingerprinting in wireless LANs[J].Computer Networks,2005,47:825-845.
  • 7Frede B.Adaptive SVM to compensate DC-link voltage ripple for voltage-source inverters[J].IEEE Trans on Power Electronics, 1999,14(4 ) : 743-752.
  • 8Tay F E H,Cao L J.Application of support vector machines in financial time series forecasting[J].Omega,2001,29 : 309-317.
  • 9Cawley G C,Talbot N L C.Improved sparse least-squares support vector machines[J].Ncurocomputing,2002,48( 1-4): 1025-1031.
  • 10Tsai C F.Training support vector machines based on stacked generalization for image classiflcation[J].Neurocomputing, 2005,64 : 497-503.

二级参考文献3

共引文献15

同被引文献91

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部