摘要
引入复拟(概率)随机变量,准范数的定义。给出了复拟随机变量的期望和方差的概念及若干性质;证明了基于复拟随机变量的马尔可夫不等式,契比雪夫不等式和辛钦大数定律;提出了拟概率空间中复经验风险泛函、复期望风险泛函以及复经验风险最小化原则等定义。证明并讨论了基于复拟随机样本的统计学习理论的关键定理和学习过程一致收敛速度的界,为系统建立基于复拟随机样本的统计学习理论奠定了理论基础。
Firstly,the definitions of complex quasi-random variable and primary norm are introduced.Next the concepts and some properties of the mathematical expectation and variance of complex quasi-random variables are provided.Secondly,for complex quasi-random variables we discuss a number of fundamental concepts such as e.g.,Markov's inequalities,Chebyshev's inequalities and a Khinchine's law of large numbers.Finally,the definitions of the complex empirical risk functional,the complex expected risk functional,and complex empirical risk minimization principle on quasi-probability measure space are proposed.Then the key theorem of learning theory based on complex quasi-random samples is proved,and the bounds on the rate of uniform convergence of learning process are constructed.The investigations will help lay essential theoretical foundations for the systematic and comprehensive development of the complex quasi-statistical learning theory.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第9期82-86,93,共6页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773062,No.60673045)
教育部科学技术研究重点项目(the Key Scientific and Technical Research Project of Ministry of Education of China under Grant No.206012)
河北省教育厅科研计划重点项目(the Key Scientific Research Project of Department of Hebei of Education of China under Grant No.2005001D)
关键词
复拟随机变量
准范数
复经验风险最小化原则
关键定理
收敛速度的界
神经网络
complex quasi-random variable
primary norm
complex empirical risk minimization principle
key theorem
the bounds on the rate of convergence
neural network