期刊文献+

基于模版对比的手写体数字识别神经网络模型 被引量:2

Artificial Neural Network model for handwritten digit recognition based on template matching
下载PDF
导出
摘要 针对现有手写体数字识别神经网络模型的不足,提出基于模版对比的改进方法。建立8×12像素的手写体数字0~9的标准模版,则模版中每个数字与其他数字之间存在一定的像素差异,以此作为标准模版差异值。由于书写存在不确定性,采用在一定范围内随机增大或减小标准模版差异值的方法来构建神经网络模型的训练样本、检验样本与测试样本。在遵循建模基本原则和步骤的情况下,建立了泛化能力较好的手写体数字识别的神经网络模型。实验表明:该方法建模便捷、实用性好,测试样本的正确识别率达99.6%以上。 The shortcomings of the models,established in before,for Handwritten Digit Recognition(HI)R) using Artificial Neural Network(ANN) are analyzed.A new method based on template matching is thus put forward.A standard template of handwritten digits 0-9 with 8×12 pels is created in this paper.The standard difference among one digit with the others is existed and picked up.Due to the uncertainty of handwritten digits,the training data,the verification data and testing data are then generated by adding a random number in a certain range to the standard differential value between the handwritten digit and the digits of standard template.The ANN model for HDR based on matching the template with good generalization ability is then established obeying to modeling principles and steps The accuracy of testing data is more than 99.6%
作者 徐哲 楼文高
出处 《计算机工程与应用》 CSCD 北大核心 2008年第9期226-228,共3页 Computer Engineering and Applications
关键词 模版对比 手写体数字 识别 神经网络 template matching handwritten digit recognition neural network
  • 相关文献

参考文献4

二级参考文献16

  • 1董聪.多层前向网络的全局最优化问题[J].大自然探索,1996,15(4):27-31. 被引量:20
  • 2[1]Schmidhuber J. Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks, 1997,10(5): 857~873
  • 3[2]Pearlmutter B A, Rosenfield R. Chaitin-Kolmogorov Complexity and Generalization in Neural Networks. In:Proc. Advances in Neural Information Processing Systems 3.San Mateo:1991,CA: 925~931
  • 4[3]Weigend A S, Rumelhart D E, Huberman B A. Generalization by Weight-Elimination with Application to Forecasting.In:Proc. Advances in Neural Information Processing Systems 3. San Mateo 1991:CA: 875~882
  • 5[4]Amari S, Murata N, Muller K. Asymptotic statistical theory of overtraining and cross-validation. IEEE Trans. Neural Networks,1997,8(5):985~996
  • 6Plamondon R,Srihari S N. On-line and off-line handwriting recognition :a comprehensive survey[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22 (1) : 63-84.
  • 7HORNIK K,STINCHCOMBE M,et al.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,(2):359-366.
  • 8王科俊,王克成.神经网络建模、预测与控制[M].哈尔滨:哈尔滨工程大学出版社,2000.
  • 9Statsoft.Neural networks[EB/OL].http://www.statsoft.com/textbook/stathome.html,2006-05-08.
  • 10NIELSEN R H.Kolmogorov's mapping neural network existence theorem[A].First IEEE International Joint Conference on Neural Networks[C].San Diego,1989.

共引文献34

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部