期刊文献+

ANFIS技术实现磁流变阻尼器的逆向建模及其应用 被引量:2

INVERSE MODELLING OF MR DAMPER BASED ON ANFIS TECHNIQUE AND ITS APPLICATION
下载PDF
导出
摘要 提出一种利用自适应神经模糊推理系统(ANFIS)技术有效解决磁流变(MR)阻尼器所固有的高度非线性动特性问题的方法。基于ANFIS技术建立了对于工程应用至关重要的MR阻尼器的逆向智能模型,成功地辨识出描述其阻尼力-输入电压关系的逆向动特性。在此基础上提出了一种基于最优控制的智能半主动控制策略。数值仿真结果表明了所提出方法的有效性和实用性,将其应用于工程结构振动控制,能够取得良好的效果。 An approach that can effectively solve the inherent highly nonlinear dynamics problem of magnetorheological (MR) damper is proposed by using adaptive neuro-fuzzy inference system (ANFIS) technique. The intelligent inver model of MR damper is established based on ANFIS technique, which can successfully identify the inverse dynamic characteristics of MR damper, portraying the relationship between the target control force and the command voltage. An intelligent semi-active control strategy is then proposed based on this inverse model and optimal control theory. Numerical simlations illustrate that the proposed methods are effective and applicable.
作者 高梅 王长征
出处 《振动与冲击》 EI CSCD 北大核心 2008年第3期140-142,164,共4页 Journal of Vibration and Shock
关键词 ANFIS 磁流变阻尼器 逆向模型 智能半主动控制 最优控制 ANFIS MR damper inverse model intelligent semi-active control optimal control
  • 相关文献

参考文献9

  • 1Dyke S J, Spencer Jr B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction [ J]. Smart Materials and Structures, 1996,5:565-575.
  • 2Dyke S J, Spencer jr B F, Sain M K, et al. Experimental study of MR dampers for seismic protection[ J ]. Smart Materials and Structures: Special Issue On Large Civil Structures, 1998,7 (5) :693-703.
  • 3Spencer Jr B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers [ J ]. Joumal of Engineering Mechanics, ASCE, 1997,123 ( 3 ) :230-238.
  • 4Schuler K C, Roschke P N. Neuro - fuzzy modeling of a magnetorheological damper using ANFIS [ A ]. Proceedings of 9^th IEEE international Conference on Fuzzy Systems, San Antonio, TX ,2000 : 122-127.
  • 5Chang C C, Zhou L. Neural network emulation of inverse dynamics for a magnetorheologieal damper[ J]. Journal of Structural Engineering, ASCE, 2002,128 ( 2 ) : 231 - 239.
  • 6Chang C C, Roschke P N. Neural network modeling of a magnetorheological damper [ J ]. Journal of Intelligent Material Systems and Structures, 1998,9:755-764.
  • 7黄昆,邹立华.基于磁流变阻尼器的多单体组合结构模糊控制[J].振动与冲击,2006,25(5):116-119. 被引量:4
  • 8唐少容,周岱,黄真,马骏,阳光.MR智能阻尼器对空间网壳结构的风振抑制分析[J].振动与冲击,2006,25(6):25-28. 被引量:18
  • 9Jang R J-S, Sun C-T, Mizutani E. Neuro-fuzzy and soft computing:a computational approach to learning and machine intelligence[ M]. Prentice Hall,Inc. ,Upper Saddle River, NJ.

二级参考文献18

共引文献20

同被引文献34

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部