期刊文献+

利用高光谱数据进行地物识别分类研究 被引量:14

Using Hyperspectral Data for Land Cover Identification and Classification
下载PDF
导出
摘要 分析了传统统计分类方法在高光谱影像地物分类中的弊端,提出并详细讨论了基于端元的监督分类技术.利用端元监督分类技术对LASIS高光谱影像进行分类,同时应用IsoData非监督分类技术即自动迭代聚类对高光谱影像进行分类.分析比较了两种分类结果,表明基于端元的监督分类技术更能满足对地物识别分类的需要. The limitation in hyperspectral land cover classification is discussed, when using traditional statistical classification methods. An endmember-based supervised classification approach is proposed and discussed. The experimental data was acquired by imaging spectrometer (LASIS). The endmember-based supervised classification procedure was used for the hyperspectral image. The IsoData unsupervised classification procedure that automatically iteratively clusters the pixels was also used. The results of supervised and unsupervised classification are compared. It shows that the endmember-based supervised classification for land cover is much more satisfied.
出处 《光子学报》 EI CAS CSCD 北大核心 2008年第3期561-565,共5页 Acta Photonica Sinica
基金 国家自然科学基金(40301031)资助
关键词 高光谱 端元 识别 分类 LASIS Hyperspectral Endmember Identification Classification LASIS
  • 相关文献

参考文献12

二级参考文献60

  • 1柴饶军,马彩文.图像序列中目标关键帧快速搜索算法[J].光子学报,2004,33(10):1233-1235. 被引量:3
  • 2唐自力,马彩文,刘波,单金玲,陈良红.单站光测图像确定空间目标三维姿态[J].光子学报,2004,33(12):1480-1485. 被引量:37
  • 3王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 4朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4..
  • 5张兵 郑兰芬 等.成象光谱技术应用植被精细光谱分析[J].遥感信息科学开放研究实验室年报,1997,:323-327.
  • 6[2]Mustard J F, Li Lin, He Guoqi.The Importance of Nonlinear Mixing Modeling for Analysis of Lunar Multispectral Data. Lunar and Planetary Science. 1997. XXVIII: 995~996
  • 7[3]Hu Y H, Lee H B, Scarpace F L.Optimal linear spectral unmixing.IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):639~644
  • 8[4]Abatzoglou T J,Mendel J M.Constrained total least squares.IEEE International Conf on Acoustics, Speech & Signal Processing, Dallas, 1987.1485~1488
  • 9[6]Herzog S G,Mustard J F.Reflectance Spectra of Five-Component Mineral Mixtures: Implications for Mixture Modeling. Lunar and Planetary Science. 1996. XXVII: 535~538
  • 10[7]Tchistiakov V,Ruckebusch C. Neural network modelling for very small spectral data sets: reduction of the spectra and hierarchical approach.Chemometrics and Intelligent Laboratory Systems,2000,54(1):93~106

共引文献132

同被引文献186

引证文献14

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部