期刊文献+

边值传热反问题误差评估的正则化仿真模型 被引量:2

Regularized Simulation Model of Error Assessment for Boundary Value Inverse Heat Conduction Problem
下载PDF
导出
摘要 传热反问题数值解误差的准确评估一直是制约它应用于工业测量的一个难点。以淬火测试探头冷却过程的非稳态一维线性传热反问题为例,以位于探头中心热电偶所测的温度数据为基础,通过引入正则化参数,抑制了反问题对测量误差的放大作用,根据特殊情况下的非级数形式的解析解,建立了数值解计算误差评估的正则化仿真模型。仿真实验获得了模型的最优正则参数,提高了反问题数值解误差评估的准确性,验证了该模型的有效性。 Accurate assessment of error in numerical solution is always a difficult part for the inverse heat conduction problem which restricts its applications in industrial measurements. Taking a one-dimensional linear inverse heat conduction problem of the cooling process of a quenching probe as an example, based on the measured temperature data of the thermocouple in the center of the probe, the magnifying effect for measurement error of the inverse problem was hem back by introducing a regularized parameter. According to the closed-form analytical solution in a special case, a regularized simulation model of error assessment in numerical solution was designed. The best regularized parameter was obtained, and the precision of error assessment in IHCP numerical solution was heightened. The validity of this method was verified in the simulation experiments.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1448-1450,共3页 Journal of System Simulation
基金 国家质量监督检验检疫总局科技项目(2005QK132)
关键词 正则化仿真 传热反问题 表面温度 误差评估 regularized simulation inverse heat conduction problem surface temperature error assessment
  • 相关文献

参考文献10

  • 1Hadamard J. Lectures on Cauchy's Problem in Linear Partial Differential Equations [M]. New Haven: Yale University Press, 1923.
  • 2Stolz G. Jr. Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes [J]. J. Heat Transfer (S0022-1481), 1960, 80(1): 20-26.
  • 3Tikhonov A N, Arsenal V Y. Solutions of Ill-Posed Problems [M]. Washington D. C.: V H Winston & Sons, 1977.
  • 4Beck J V, Blackwell B, Clair C R. St. Inverse Heat Conduction-Ⅲ posed Problems [M]. New York: John Wiley & Sons, 1985.
  • 5Blackwell B E An Efficient Technique for the Numerical Solution of the One-Dimensional Inverse Problem of Heat Conduction [J]. Numerical Heat Transfer, 1981 (4): 229-239.
  • 6Weber C F. Analysis and Solution of the Ⅲ-Pose Inverse Heat Conduction Problem [J]. Int. J. Heat Mass Transfer (S0017-9310), 1981, 24(11): 1783-1792.
  • 7Huang C H, Chao B H. An Inverse Geometry Problem in Identifying Irregular Boundary Configurations [J]. International Journal of Heat and Mass Transfer (S0017-9310), 1997, 40(9): 2045-2053.
  • 8吴洪潭.工业热设备内壁缺陷形态仿真研究[J].系统仿真学报,2007,19(2):244-246. 被引量:7
  • 9Elden L, Berntsson F, Reginska T. Wavelet and Fourier Method for Solving the Sideways Heat Equation [J]. SIAM Journal on Scientific Computing (S1064-8275), 2000, 21(6): 2187-2205.
  • 10He Qun, Li Xijing. Application of Heat Transfer Method to Measuring Cooling Power of Quenchants with Silver Cylindrical Probe [C]//Proc of 5th ICHTM. Tsukuba, 1986: 1822-1827.

二级参考文献5

  • 1Tikhonov A N,Arsenal V Y.Solutions of Ill-Posed Problems[M].Washington D C:V H Winston & Sons,1977.
  • 2Beck J V,Blackwell B,Clair C R St.Inverse Heat Conduction-Ill posed Problems[M].New York:John Wiley & Sons,1985.
  • 3Huang C H,Chao B H.An Inverse Geometry Problem in Identifying Irregular Boundary Configurations[J].International Journal of Heat and Mass Transfer (S0017-9310),1997,40(9):2045-2053.
  • 4Lasdon L S,Mitter S K,Warren A D.The Conjugate Gradient Method for Optimal Control Problem[J].IEEE Transactions on Automatic Control (S0018-9286),1967,AC-12:132-138.
  • 5Brebbia C A.The Boundary Element Method for Engineers[M].London:Pentech Press,1978

共引文献6

同被引文献18

  • 1Blackwell B, Beck J V. A technique for uncertainty analysis for inverse heat conduction problem-s[J]. International Journal of Heat and Mass Transfer, 2010,53(4): 753-759.
  • 2Qian Z, F C-L, Xiong X-T. A modified method for determining the surface heat flux of IHCP[J].Inverse Problems in Science and Engineering, 2007, 15(3): 249-265.
  • 3Cialkowski M, Grysa K. A Sequential and Global Method of Solving an Inverse Problem of HeatConduction Equation [J]. Journal of Theoretical and Applied Mechanics, 2010,48(1): 111-134.
  • 4Cheng W, Pu C-L. Two regularization methods for an axisymmetric inverse heat conductionproblem[J]. Journal of Inverse and Ill-Posed Problems, 2009,17(2): 159-172.
  • 5Pourgholi R, Rostamian M. A numerical technique for solving IHCPs using Tikhonov regulariza-tion method [J]. Applied Mathematical Modelling, 2010, 34(8): 2102-2110.
  • 6Lou G, Wang X, Wang J, Zhao W. The Application of BP Algorithm of NN for the TemperatureIdentification of Shaft Furnace, in 2nd Ieee International Conference on Advanced ComputerControl[C]. H. Xu, Editor. 2010, 179-182.
  • 7Wang Y B, Cheng J, Nakagawa J, Yamamoto M. A numerical method for solving the inverse heatconduction problem without initial value [J]. Inverse Problems in Science and Engineering, 2010,18(5): 655-671.
  • 8Xiong X-T,Liu X-H, Yan Y-M, Guo H-B. A numerical method for identifying heat transfercoefficient [J]. Applied Mathematical Modelling, 2010, 34(7): 1930-1938.
  • 9MASOOD K, MUSTAFA M T. Stabilizing of an ill-posed inverse problem by using smoothingsplines and hyperbolic heat equation[J]. Inverse Problems in Science and Engineering, 2008, 16(2).
  • 10Taler J, Duda P. Solving Direct and Inverse Heat Conduction Problems[M]. Netherlands: Springer,2006.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部