期刊文献+

一种基于混杂EA的子结构发现算法 被引量:1

Hybrid EA-based Substructure Discovery Algorithm
下载PDF
导出
摘要 将混杂进化算法引入图数据挖掘,定义了基于图的染色体表示与加边变异和减边变异算子。针对子图同构问题,采用了SUBDUE提出的带实例的子结构的概念并提出了个体的潜力和带历史的个体两个概念,前者用以衡量一个个体生成新子结构的能力,后者用来保存进化过程中有潜力的个体,从而使减边变异成为可能,在一定程度上克服了子图同构问题。实验结果表明,以上措施增强了算法的寻优能力,提高了算法的效率和解的质量。 A hybrid evolutionary algorithms based system was developed to perform substructure discovery on databases represented as graphs, among which new representation of chromosomes and new operators of adding-an-edge mutation and deleting-edges mutation on graphical databases were defined. In order to handle the subgraph isomorphism problem, the technique of substructure with its instances as a whole was adopted which had been proposed by a famous graphical data mining algorithm SUBDUE, and proposed two new concepts, one is the individuals' potential which measure individuals' capabilities io produce new individuals, the other is the concept of individuals with history in which some potential individuals produced during the evolution are preserved, which enables the deleting-edges mutation and overcomes the subgraph isomorphism problem in some extent. Experimental results show that these measures successfully improve the searching capability of the algorithm and hence increase both the efficiency of the algorithm and the qualities of solutions.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1626-1629,共4页 Journal of System Simulation
基金 国家自然科学基金(70571057)
关键词 混杂进化算法 图数据挖掘 子结构发现 最小描述长度 hybrid evolutionary algorithms graphical data mining substructure discovery MDL
  • 相关文献

参考文献11

  • 1A Inokuchi, T Washio, H Motoda. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data [C]//PKDD, Lyon, France, 2000. Berlin, Germany: Springer, 2000: 13-23.
  • 2M Kuramochi, G Karypis. An Efficient Algorithm for Discovering Frequent Subgraphs [J]. IEEE Trans. Knowl. Data Eng. (S1041-4347), 2004, 16(9): 1038-1051.
  • 3X Yan, J Han. Gspan: Graph-based Substructure Pattern Mining [C]// Int. Conf. On Data Mining, Maebashi City, Japan, 2002. Washington, USA: IEEE Computer Society, 2002:721-724.
  • 4L Dehaspe, H Toivonen. Discovery of Frequent Datalog Patterns [J]. Data Mining and Knowledge Discovery (S1384-5810), 1999, 3(1): 7-36.
  • 5L D Raedt, S Kramer. The Levelwise Version Space Algorithm and Its Application to Molecular Fragment Finding [C]// UCAI, Seattle, Washington, USA, 2001. San Fransisco, CA, USA: Morgan Kaufmann, 2001: 853-862.
  • 6D J Cook, L B Holder. Graph-based Data Mining [J].IEEE Intelligent Systems (S1094-7167), 2000, 15(2): 32-41.
  • 7P Grunwald. A Tutorial Introduction to the Minimum Description Length Principle [EB/OL]. (2004-4) [2006-12]. http://homepages.cwi.nl/pdg/ftp/mdlintro. pdf
  • 8Jiawei Han, Micheline Kamber.数据挖掘概念与技术[M].第2版.北京:机械工业出版社,2006.
  • 9A Sinha, D E Goldberg. A Survey of Hybrid Genetic and Evolutionary Algorithms [EB/OL]. (2003-4) [2006-12]. Jan. 2003. IlliGAL Report No. 2003004. http://www-illigal.ge.uiuc.edu
  • 10马清亮,胡昌华,杨青.一种用于多目标优化的混合遗传算法[J].系统仿真学报,2004,16(5):1038-1040. 被引量:25

二级参考文献4

  • 1Zitzler E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications [D]. Switzerland: Swiss Federal Institute of Technology, 1999.
  • 2Mistuo G, Runwei C. Genetic Algorithms and Engineering Optimization [M]. New York: Wiley & Sons, 2000.
  • 3Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective Evolutionary Optimization [A]. First International Conference on Evolutionary Multi-Criterion Optimization [C]. Switzerland:Springer-Verlag, 2001. 284-298.
  • 4Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.

共引文献24

同被引文献9

  • 1Inokuchi A,Washio T,Motoda H.An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data[C]//Proc.of the 4th European Conf.on Principles and Practice of Knowledge Discovery in Databases(PKDD).Lyon,France:Springer,2000:13-23.
  • 2Kuramochi M,Karypis G.Finding Frequent Patterns in A Large Sparse Graph[C]//Proc.of the 2004 SIAM Data Mining Conf..Lake Buena Vista,Florida,USA:Morgan Kaufmann,2004.
  • 3Yan Xi-feng,Han Jia wei.gSpan:Graph-based Substructure Pattern Mining[C]//Int.Conf.on Data Mining.Maebashi City,Japan:IEEE Computer Society,2002:721-724.
  • 4Huan J,Wang W,Prins J.Efficient Mining of Frequent Subgraph in the Presence of Isomorphism[C]//Third IEEE International Conference on Data Mining(ICDM 2003).[s.l.]:[s.n.],2003:549-552.
  • 5Grunwald P.A Tutorial Introduction to the Minimum Description Length Principle[EB/OL].2009-12-12.http://www.csee.wvu.edu/~natalias/ee568/grunwald04.pdf.
  • 6Cook D J,Holder L B.Graph-based data mining[J].IEEE Intelligent Systems,2000,15(2):32-41.
  • 7Yoshida K,Motoda H,Indurkhya N.Graph-based induction as a unified learning framework[J].Journal of Applied Intelligence,1994(4):297-328.
  • 8Bandyopadhyay S,Maulik U,Cook D J,et al.Enhancing structure discovery for data mining in graphical databases using evolutionary programming[C]//Proceedings of the Florida Artificial Intelligence Research Symposium.Pensacola Beach,Florida,USA:AAAI Press,2002:232-236.
  • 9常新功,李敏强,寇纪淞.基于进化算法的图形数据模式发现[J].模式识别与人工智能,2008,21(1):116-121. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部