期刊文献+

基于进化半监督模糊聚类算法的病毒检测研究

The Research of Computer Virus Detection Based on Evolutionary Sem-supervised Fuzzy Clustering Algorithm
下载PDF
导出
摘要 现有的计算机病毒检测技术很难检测出未知病毒,在病毒防御中处于被动。复杂的病毒形式,迫切需要一种具有自学习能力,能主动分类、识别和检测未知病毒的方法。分析现有的病毒检测技术,研究进化半监督模糊聚类算法在病毒检测中的应用,探讨其关键技术,在此基础上给出一种病毒检测模型,并通过计算机仿真进行验证,实验结果表明新的方法对未知病毒检测是有效的。 Existing virus detection techrfiques can hardly detect unknow computer virus. Austere situation of virus, needs a new method to detect unknow computer virus that can self- learning ability and can active category, in this paper, analyzed the existing virus zdetection techniques, studied the Application of Evolutionary Sem - Supervised Fuzzy Clustering Algorithm in computer virus detection,explored its key technologies,on this basis, make a model of the computer virus detecion, then usied computer simulation tests to verify.
作者 朱红斌 蔡郁
出处 《计算技术与自动化》 2008年第1期104-106,共3页 Computing Technology and Automation
关键词 计算机病毒 进化半监督 模糊聚类 模型 仿真测试 computer virus evolutionary Sem - supervised fuzzy clustering model simulation test
  • 相关文献

参考文献6

二级参考文献15

  • 1[1]Vapnik VN. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Cherkassky V, Mulier F. Learning from Data-Concepts, Theory and Methods. New York: John Wiley Sons, 1998.
  • 3[3]Joachims T. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the European Conference on Machine Learning (ECML). Berlin: Springer-Verlag, 1998. 37~142.
  • 4[4]Weston GJ, Barnhill S. Gene selection for cancer classification using support vector machines. Machine Learning, 2002,46(1-3): 389~422.
  • 5[5]Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods: Support Vector Machines. Cambridge: MIT Press, 1998. 185~208.
  • 6[6]Smola AJ. Learning with kernels [Ph.D. Thesis]. University of Birlinghoven, 1998.
  • 7[7]Smola AJ, Scholkopf B. A tutorial on support vector regression. Technical Report, TR 1998-030. London: Royal Holloway College, 1998.
  • 8[8]Shevade SK, Keerthi SS, Bhattacharyya C. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 2000,11(5):1188~1194.
  • 9[9]Flake GW, Lawrence S. Efficient SVM regression training with SMO. Machine Learning Special Issue on SVMs, 2000,46(1~3): 271~290.
  • 10[10]Martin M. On-Line support vector machines for function approximation. Technical Report, LSI-02-11-R. Catalunya: Department of Software, Universitat Politecnica de Catalunya, 2002.

共引文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部