期刊文献+

基于密集度的搅动多目标演化算法

Stir strategy based on multi-objective evolutionary algorithm
下载PDF
导出
摘要 多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域。定义和使用密集度来保持群体中个体的均匀分布,将个体的Pareto强度值和密集度合并到个体的适应值定义中。提出搅动策略,以提高算法对解空间的遍历性,从而较大程度上避免算法的早熟,对每次搅动得到的部分非劣解个体进行邻域搜索以加快非劣解前沿的进化。最后,测试函数的实验结果表明了算法的可行性和有效性。 Capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run,and the current research work focuses on the Pareto optimal-based MOO evolutionary approaches.The intensive degree is defined and used to maintain a good spread of solution in the population,and define the fitness of the individual through Pareto strength and intensive degree,and given the stir strategy,which results in a new population significantly indifferent from the old one while inheriting the evolutionary information from the history,by this way,the performance on global convergence is enhanced,and premature is avoided simultaneously.Test results show that the new approach is feasible and effective. Stir strategy based on multi-objective evolutionary algorithm LI Hong-mei1;2(1.College of Computer;Sun Yat-Sen University;Guangzhou 510275;China;2.Department of Computer;Guangdong Baiyun College;Guangzhou 510450;China) Capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run,and the current research work focuses on the Pareto optimal-based MOO evolutionary approaches.The intensive degree is defined and used to maintain a good spread of solution in the population,and define the fitness of the individual through Pareto strength and intensive degree,and given the stir strategy,which results in a new population significantly indifferent from the old one while inheriting the evolutionary information from the history,by this way,the performance on global convergence is enhanced,and premature is avoided simultaneously.Test results show that the new approach is feasible and effective.
作者 李红梅
出处 《计算机工程与设计》 CSCD 北大核心 2008年第6期1419-1422,共4页 Computer Engineering and Design
关键词 演化算法 多目标优化 密集度 搅动策略 邻域搜索 evolutionary algorithms multi-objective optimization intensive degree stir strategy neighborhood searching
  • 相关文献

参考文献10

  • 1Knowles J, Come D.The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization [C]. Washington DC:Proceedings of the 1999 Congress on Evolutionary Computation, 1999:98-105.
  • 2Deb K,Pratap A,Agarwal S,et al.A fast end elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197.
  • 3Horn J, Nafpliots N, Goldberg D E.A niche Pareto genetic algorithm for multiobjective optimization[C].Proceedings of the first IEEE Conference Evolutionary Computation.Piscataway, New Jersey:IEEE Press,1994:22-87.
  • 4Zitzler E, Thiele L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3 (4): 257-271.
  • 5Ikeda Kokolol. Failure of Pareto-based MOEAS: Does nondominated really mean near to optimal[C].Proceedings of the 2001 IEEE Congress on Evolutionary Computation.Piscate way, New Jersy:IEEE Press,2001.
  • 6GUO Tao, KANG Li shan State Key Laboratory of Software Engineering, Wuhan University,Wuhan 430072, China.A New Evolutionary Algorithm for Function Optimization[J].Wuhan University Journal of Natural Sciences,1999,4(4):409-414. 被引量:37
  • 7Eckart Zitzler, Lothar Thiele. Comparison of multi-objective evolutionary algorithms:Empirical results[J].Evolutionary Computation,2000,8(2): 173-195.
  • 8Deb K.Multi-objective genetic algorithms: Problem difficulties and construction of test function[J].Evolutionary computation, 1999(7):205-230,.
  • 9LU Hai-ming,Garygy.Rank-density based multi.objective genetic algorithm[C].Proc 2000 Cong Evol Comput Piscataway.NJ: IEEE Press,2002:944-949.
  • 10崔逊学,李淼,方廷健.多目标协调进化算法研究[J].计算机学报,2001,24(9):979-984. 被引量:35

二级参考文献8

  • 1[1]Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 1995, 3(1):1-16
  • 2[2]Osyczka A. Multicriteria optimization for engineering design. In: Gero J S ed. Design Optimization. Academic Press, 1985. 193-227
  • 3[3]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proc 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale, 1985. 93-100
  • 4[4]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proc 5th International Conference on Genetic Algorithms, 1993. 416-423
  • 5[5]Roy B. How outranking relation help multiple criteria decision making. In:Cochrane J L, Zeleny M eds. Multiple Criteria Decision Making. South Carolina: University of South Carolina Press, 1973. 179-201
  • 6[6]van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithm test suites. In: Proc the 1999 ACM Symposium on Applied Computing, San Antonio, Texas, 1999. 351-357
  • 7[7]Thomas Back. Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996
  • 8[8]van Veldhuizen D A, Lamont G B. Evolutionary computation and convergence to a pare to front. In Koza J R ed. Late Breaking Papers at the Genetic Programming 1998 Conference. California: Stanford University, 1998. 221-228

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部