期刊文献+

概念格与粗糙集的数据分析方法研究 被引量:4

Study on concept lattice and rough sets
下载PDF
导出
摘要 概念格和粗糙集是数据挖掘中对数据进行分析与处理的两个有力工具,它们在数据分析方面有相似之处。通过运用概念格刻画粗糙集的一些概念与性质给二者建立了联系。指出了概念格每个结点都是粗糙集中一个等价类,并借鉴粗糙集的思想,提出了在概念格中进行概念近似的方法。同时使用概念格中的概念重新描述了粗糙集的上下近似,最后通过事例将粗糙集中改进的区分矩阵运用于概念格中的属性约简,从而减少了区别矩阵的存储空间,并同时减少了区别矩阵的计算量,真正从一定意义上结合了二者的优点。 Concept lattice and rough sets are two powerful tools in data mining for data analysis and processing,there are some similar parts between them of data analysis.Some relations are established by depicting some concepts and characters of rough sets usings concept lattice.Indicate that every node of concept lattice is an equivalence class of rough set,and rough set use for reference,bring forward the method of concept approximation in concept lattice.At the same time,the upper and lower approximations are red scribed by use of some concepts of concept lattice,finally,the improved discernibility matrix was used to the attribute reduction with an example.Ac-cordingly the memories of the discernibility matrix reduce,so does the quantity of calculating.Strong points between them are combined.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第6期1423-1425,共3页 Computer Engineering and Design
关键词 形式背景 概念格 粗糙集 区别矩阵 等价类 属性约简 概念近似 formal context concept lattice rough sets discernibility matrix equivalence classes attribute reduction concept ap-proximation
  • 相关文献

参考文献8

二级参考文献19

  • 1王志海 胡可云.概念格上的粗糙集合运算与函数依赖生成[J].清华大学学报,1998,38(2):1-4.
  • 2[1]Ganter B, Wille R.Formal Concept Analysis:Mathematical Foundations.Berlin: Springer, 1999
  • 3PAWLAK Z. Rough Sets : Theoretical Aspects of Reasoning About Data [M]. Dordrecht : Kluwer Academic Publishers,1991.
  • 4RIAL I. Ordered sets[M]. Beidel :Beidel Publishers, 1982.
  • 5OOSTHUIZEN G D. Rough sets and concept lattices[A]. In:Ziarko W P ed. Rough Sets ,and Fuzzy Sets and Knowledge Discovery (RSKD'93) [C]. London :Springer-Verlag, 1994,24-31.
  • 6KENT R E. Rough concept analysis [A]. In: Ziarko W P ed. Rough Sets,and Fuzzy Sets and Knowledge Discovery (RSKD'94)[C]. London : Springer-Verlag, 1994. 248-255.
  • 7正忠植.知识发现[M].北京:清华大学出版社,2002..
  • 8Hu Keyun,Proceedings of PAKDD-99[C],1999年,109页
  • 9Hu Keyun,Proceedings of RSFDGr C99,1999年,443页
  • 10王志海,清华大学学报,1998年,38卷,增2期,14页

共引文献138

同被引文献59

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部