期刊文献+

基于改进KCCA的快速特征提取方法 被引量:1

Fast feature extraction method based on improved KCCA
下载PDF
导出
摘要 KCCA特征提取技术具有处理非线性数据的良好性能,但是存在计算量大、特征提取缓慢的局限性。针对KCCA的这一缺点,在研究KCCA特征提取技术和SVDD分类理论的基础上,提出了一种基于改进KCCA的快速特征提取方法,并将改进后的KCCA与SVDD的优势相结合应用于人脸识别中。通过在ORL人脸库上的实验仿真和对比结果验证了所提出方法的有效性。 The latest feature extraction methods based on KCCA are introduced.However,feature extraction for one sample requires that kernel functions between training samples and the sample be calculated in advanced.In order to upgrade the extraction efficiency,an improved algorithm is developed.The framework of KCCA and SVDD used in face recognition is proposed for the end.The experiment results on the ORL face image database demonstrate the competitiveness of the method proposed.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第6期1475-1477,共3页 Computer Engineering and Design
关键词 典型相关分析 核方法 核典型相关分析 支持向量数据描述(SVDD) 人脸识别 canonical correlation analysis kernel method kernel canonical correlation analysis support vectors data description face recognition
  • 相关文献

参考文献10

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2Xu X N,Mu Z C.Feature fusion method based on KCCA for ear and profile face based multimodal recognition[C].Proc IEEE Int Conf Automation and Logistics,2007:620-623.
  • 3贺云辉,赵力,邹采荣.一种基于KCCA的小样本脸像鉴别方法[J].应用科学学报,2006,24(2):140-144. 被引量:8
  • 4David M J Tax, Robert P W Duin.Support vector data description [J].Machine Learning,2004,54(1 ):45-66.
  • 5Pawel P, Gwidon W S.Fast classification of engineering surfaces without surface parameters [J]. Tribology International, 2006,39 (12):1624-1633.
  • 6Sang-Woong L,Jooyoung P, Seong W L.Low resolution face recognition based on support vector data description[J].Pattern Recognition,2006,39(9): 1809-1812.
  • 7王波,徐毅琼,李弼程.基于SVM的多分类器融合算法在说话人识别中的应用[J].计算机工程与设计,2007,28(12):2909-2910. 被引量:5
  • 8Zou C R,Sun N,Ji ZH Zhao L.2DCCA:A novel method for small sample size face recognition[J].IEEE Workshop on Applications of Computer Vision,2007:43-47.
  • 9Sun T K, Chen S C.Locality preserving CCA with applications to data visualization and pose estimation [J]. Image and Vision Computing,2007,25(5):531-543.
  • 10KiY L,Dae W K, Doheon L,et al.Improving support vector data description using local density degree [J]. Pattern Recogniton, 2005,38(10):1768-1711.

二级参考文献36

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 2VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107.
  • 3Hotelling H.. Relations between two sets of variates. Biometrika, 1936, 28: 321~377.
  • 4Phillips P.J., Moon H.J., Rizvi S.A., Rauss P.J.. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10): 1090~1104.
  • 5Bolme D.S., Beveridge J.R., Teixeira M., Draper B.A.. The CSU face identification evaluation system: Its purpose, features, and structure. In: Proceedings of the 3rd International Conference on Computer Vision Systems(ICVS), Graz, Austria, 2003, 304~313.
  • 6Turk M., Pentland A.. Face recognition using Eigenfaces. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 1991, 586~591.
  • 7Belhumeur P.N. et al.. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 8Jin Z., Yang J.Y., Tang Z.M., Hu Z.S.. A theorem on the uncorrelated optimal discriminant vectors. Pattern Recognition, 2001, 34(7): 2041~2047.
  • 9Huang Y.S., Suen C.Y.. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 7(1): 90~94.
  • 10Constantinidis A.S., Fairhurst M.C., Rahman A.F.R.. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms. Pattern Recognition, 2001, 34(8): 1528~1537.

共引文献96

同被引文献13

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 3WIPO [EB/OL]. http://www.wipo.int/portal/index.html,2009- 03-23.
  • 4STN International [EB/OL]. http://www.stn-intemational.de, 2009-03-23.
  • 5Littman, M. L., Dumais, S. T., & Landauer, T. K. Automatic cross-language information retrieval using latent semantic indexing[M]. In G. Grefenstette (Ed.), Cross language informarion retrieval, Chapter 5. Kluwer Academic Publishers, Belongia Amsterdam, 1998 : 15-21.
  • 6Vinokourov, A., Shawe-Taylor, J., & Cristianini, N. Inferring a semantic representation of text via cross-language correlation analysis. In: Advances of neural information processing systems, Vol. 15 [M]. MIT Press, Cambridge, MA, 2002:91- 98.
  • 7HOTELLING H. Relations between two sets of variates [J]. Biometrika , 1936, (28):321-377.
  • 8AKAHO Shotaro. A kernel method for canonical correlation analysis[C]. Proceedings of the International Meeting on Psychometric Society (IMPS2001). Osaka: [sn], 2001: 101-105.
  • 9Hardoon, D. R., Szedmark, S., & Shawe-Taytor, J. Canonical correlation analysis: an overview with application to learning methods[J]. Neural Computation, 2004,(16): 2639 - 2664.
  • 10Li, Y., & Shawe-Taylor, J. Using KCCA for Japanese - English cross-language information retrieval and document classification [J]. Journal of Intelligent Information System, 2006, 27(2): 117 - 133.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部