期刊文献+

连续超松弛支持向量机回归算法应用研究 被引量:1

Research on application of successive overrelaxation for support vector regression arithmetic
下载PDF
导出
摘要 支持向量回归问题的研究,对函数拟合(回归逼近)具有重要的理论和应用意义。借鉴分类问题的有效算法,将其推广到回归问题中来,针对用于分类问题的SOR支持向量机有效算法,提出了SORR支持向量回归算法。在若干不同维数的数据集上,对SORR算法、ASVR算法和LibSVM算法进行数值试验,并进行比较分析。数值实验结果表明,SORR算法是有效的,与当前流行的支持向量机回归算法相比,在回归精度和学习速度上都有一定的优势。 The research on support vector regression has an important theoretical and applicable significance on function regression(re-gression approximation).Using effective arithmetic of classifier for reference,it is extended to the matter of regression.Aimed at the effective SOR(successive overrelaxation for support vector) arithmetic for classification,the effective SORR(successive overrelaxation for support vector regression) arithmetic is proposed.On several different data aggregation of dimensions,the numerical experiments and comparison are carried out on SORR arithmetic,ASVR arithmetic and LibSVM arithmetic.The numerical experiments show that the SORR arithmetic is effective and it has certain advantages on learning speed and regression accuracy,compared with the current popu-lar support vector regression arithmetic.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第6期1489-1490,1493,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(10571109) 山东省自然科学基金项目(2007ZRB019FK)
关键词 连续超松弛支持向量 连续超松弛支持向量回归算法 函数拟合 学习速度 回归精度 successive overrelaxation for support vector successive overrelaxation for support vector regression arithmetic function regression learning speed regression accuracy
  • 相关文献

参考文献8

  • 1曾绍华.支持向量回归机算法理论研究与应用[D].重庆:重庆大学,2007.
  • 2李海生.支持向量机回归算法与应用研究[D].广州:华南理工大学,2006.
  • 3Laskov EAn improved decomposition algorithm for regression support vector machines [C]. Advances in Neural Information Processing Systems 12,2000:484-490.
  • 4Shevade S K, Keerthi S S,Bhattacharyya C,et al.Improvements to the SMO algorithm for SVM Regression[J].IEEE Trans on Neural Network,2000,11 (5): 1188-1193.
  • 5谢晓楠,赵雁南,杨泽红,王家廞.COX2抑制剂活性预测中的拟合方法比较[J].计算机工程与设计,2006,27(21):3967-3969. 被引量:3
  • 6Musicant D R,Alexander Feinberg.Active set support vector regression[J].IEEE Transactions on Neural Networks,2004,15(2):268-275.
  • 7丁蕾,陶亮.改进的用于回归估计的支持向量机学习算法[J].计算机工程与应用,2005,41(19):44-46. 被引量:11
  • 8Boston Housing数据集和人工数据集.[EB/OL].Http://www.ics.uci.edu/~mlearn/MLRepository.html.

二级参考文献18

共引文献12

同被引文献6

  • 1丁蕾,陶亮.改进的用于回归估计的支持向量机学习算法[J].计算机工程与应用,2005,41(19):44-46. 被引量:11
  • 2崔世林,樊京.最小二乘支持向量机及其在故障诊断中的应用[J].微计算机信息,2006(06S):214-216. 被引量:7
  • 3Suykens J A K, Vandewalle J. Least Square Support Vector Machine Classifiers [J]. Neural Processing Letters, 1999 , 9 (3) : 293-300.
  • 4O L Mangasarian, David R Musicant.Successive overrelaxation for support vector machines [J]. IEEE Trans on Neural Networks. 1999, 10(5):1032-1037.
  • 5http://archive.ics.uci.edu/ml/index.html. UCI - MLR: University of California Irvine Machine Learning Repository, California Irvine.
  • 6张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部