期刊文献+

Banach空间中时滞型多值积分微分包含 被引量:6

Multivalued integrodifferential inclusions in Banach spaces
下载PDF
导出
摘要 讨论了Banach空间中时滞型积分微分包含.利用Banach空间中半线性微分方程的理论和方法、Hausdorff非紧测度和不动点定理,得到半群在失去紧性的条件下上述方程适度解的存在性,改进和推广了先前一些已有的结果. This paper is concerned with the multivalued integrodifferential inclusions in Banach spaces. The basic tools are the methods and results of semilinear differential equations in Banach spaces, the properties of Hausdorff's measure of noncompactness and the fixed point techniques. The existences of mild solutions of the equations in different case are obtained without the assumption of compactness on associated semigroup. It improves and generalizes some previous results in this aera.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第1期5-9,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10571150)
关键词 HAUSDORFF非紧测度 积分微分适度解 C0-半群 适度解 Hausdorff measure of noncompactness integrodifferential inclusions C0-semigroup mild solution
  • 相关文献

参考文献13

  • 1BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semiljnear evolution nonlocal Cauchy problem [J]. J Math Anal Appl, 1991, 162(2): 494-505.
  • 2GRIPENBERG G. Global existence of solutions of Volterra intergrodifferential equations of parabolic type [J]. J Diff Eqs, 1993, 102(1): 382-390.
  • 3BENCHOHRA M, NTOUYAS S K. Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces [J]. J Math Anal Appl, 2001, 258(2): 573-590.
  • 4TRAVIS C C, WEBB G F. Existence and stability for reversible semigroups of Lipschitzian mappings in Banach spaces [J]. Dyn Syst & Appl, 2000, 9(2): 255-268.
  • 5WEBB G F. Autonomos nonlinear functional differential equations and nonlinear semigroups [J]. J Math Anal Appl, 1974, 46(1): 1-12.
  • 6LEUNG A W, ZHOU Zhi-ming. Global stability for large systems of Volterra type integrodifferential population delay equations [J]. Nonlinear Anal, 1988, 12(3): 495-505.
  • 7张进,练婷婷,李刚.Banach空间中具有非局部条件的积分微分方程[J].扬州大学学报(自然科学版),2007,10(4):21-25. 被引量:11
  • 8XUE Xin-mei. Existence of solutions for semilinear nolocal Cauchy problems in Banach spaces [J]. Electronic J Diff Eqs, 2005, 64(2): 1-7.
  • 9DEIMLING K. Nonlinear functional analysis[M]. London: Springer-Verlag, 1985.
  • 10BOTHE D. Multivalued perturbations of m-accretive differential inclusions [J]. Isreal J Math, 1998, 108(2): 109-138.

二级参考文献14

  • 1邓海荣,马兆丰.Banach空间中常微分方程解的存在唯一性定理的注[J].扬州大学学报(自然科学版),2007,10(1):1-3. 被引量:2
  • 2BAHUGUNA D. Quasilinear integrodifferential equations in Banach spaces [J]. Nonlinear Anal, 1993, 24:175-183.
  • 3BENCHOHRA M, NTOUYAS S K. Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions [J]. J Math Anal Appl, 200I, 258: 573-590.
  • 4NTOUYAS S K, TSAMTOS P C. Global existence for semilinear evolution equations with nonlocal conditions[J].JMath AnalAppl, 1997, 210: 679-687.
  • 5BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonloeal Cauchy problem[J]. J Math Anal Appl, 1991, 162: 497-505.
  • 6DENG K. Exponential decay of solutions of semilinear parabolic equations with nonloeal initial condition[J]. J Math Anal Appl, 1993, 179: 630-637.
  • 7GRIPENBERG G. Global existence of solutions of Vlterra integrodifferential equations of parabolic type [J]. J Differ Eqn, 1993, 102:382-390.
  • 8LIANG Jing, LIU James, XIAO Tie-jun. Nonlocal Cauchy problems governed by compact operator families [J].Nonlinear Anal, 2004, 57:183-189.
  • 9XUE Xin-mei. Nonlinear differential equations with nonlocal conditions in Banach spaces [J]. Nonlinear Anal, 2005, 63: 575-586.
  • 10XUE Xin-mei. Existence of solutions for semilinear nolocal Cauchy problems in Banach spaces[J]. Elec J D E, 2005, 64(1): 1-7.

共引文献10

同被引文献46

  • 1NikolaosS.PAPAGEORGIOU,NikolaosYANNAKAKIS.Second Order Nonlinear Evolution Inclusions Existence and Relaxation Results[J].Acta Mathematica Sinica,English Series,2005,21(5):977-996. 被引量:5
  • 2Nikolaos S. PAPAGEORGIOU Nikolaos YANNAKAKIS.Second Order Nonlinear Evolution Inclusions Ⅱ: Structure of the Solution Set[J].Acta Mathematica Sinica,English Series,2006,22(1):195-206. 被引量:2
  • 3TRAVIS C C, WEBB G F. Existence and stability for reversible senigrouos of Lipschitzian mappings in Banach spaces [J]. Dyn Syst Appl, 2000, 9(2): 255-268.
  • 4WEBB G F. Antonomos nonlinear functional differential equations and nonlinear mappings[J]. J Math Anal Appl, 1974,46(1): 1-12.
  • 5LEUNG A W, ZHOU Z. Global stability for large systems of Volterra type integrodifferential population delay equations[J]. Nonlinear Anal, 1988, 12(3): 195-505.
  • 6DONG Qi-xiang, FAN Zhen-bin, LI Gang. Existence of solutions to nonlocal functional differential and integrodifferential equations [J]. Int J Nonlinear Sci, 2008, 5(2) : 140-151.
  • 7FAN Zhen-bin, DONG Qi-xiang, LI Gang. Semilinear differential equations with nonlocal conditions in Banach spaces[J].Int J Nonlinear Sci, 2006, 2(3): 131-139.
  • 8BAGHLI S, BENCHOHRA M. Perturbed functional and neutral functional evolution equations with infinite delay in Frechet spaces[J]. Electronic J Diff Eqs, 2008(69) : 1-19.
  • 9BENCHOHRA M, DJEBALI S, MOUSSAOUI T. Boundary value problems for doubly perturbed first order ordinary differential systems [J].Electronic J Qual Theory of Diff Eqs, 2006 (11) : 1-10.
  • 10BANAS J, GOEBEL K. Measure of non-compactness in Banach space [M]// Lecture Notes in Pure and Applied Math. New York: Dekker, 1980: 4-138.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部