期刊文献+

基于M残差的方差分量估计 被引量:1

The Estimate of Variance Components Based on M-Estimate Residuals
下载PDF
导出
摘要 根据M估计的线性表达式原理,导出了不同类观测M估计的线性表达式、多余参数以及观测量和参数估计量的方差协方差矩阵。M残差的二次型的无偏估计是方差分量和多余参数的函数。当误差密度已知时,多余参数的显式可以由方差分量表达,此时二次型是方差分量的显线性函数,由此构成了基于M残差的方差分量无偏估计公式。对Lp估计和正态分布,导出了方差分量估计的实用公式,在边角网中进行了应用。与赫尔默特方法进行比较,结果表明,有粗差时,方差分量估计和参数估计结果随着Lp估计的p的变化相差显著,无粗差时(或粗差被剔除时),不同的方差分量估计方法的结果相差甚微。该方法可以对赫尔默特方法进行有效的检查。 Based on the principle of the linear representation of the M-estimate, this paper derives the linear representation and nuisances of M-estimate for Heteroscedastic observations and the asymptotic variance-covariance matrix of the observations and the estimator of the unknown parameters; The unbiased estimate of the weighted quadric type of M-estimate residuals is derived from the asymptotic variance-covariance matrixes, it is the implicit function of heteroscedastic variances (or variance components) and nuisances. For the known error density, nuisances have their explicit representation only relative Heteroscedastic variances or their square roots, which constructs unbiased estimate form of heteroscedastic variance for computation. For Lp estimate and normal errors, the practical form estimating heteroscedastic variances is derived and applied in side-angle network. As compared with Helmert method, it shows that the estimate result of variance components and parameters varies significantly with p of Lp-estimate as gross errors occur; if there exist no gross errors or they are rejected right, there is a little gap in the estimate result. The estimate method derived in this paper can be used in adjustment of heteroscedastic model and for a good checkout of Helmert method.
出处 《重庆建筑大学学报》 EI CSCD 北大核心 2007年第6期62-66,共5页 Journal of Chongqing Jianzhu University
基金 国家自然科学基金(NSFC-40674015) 中国科学院测量与地球物理研究所动力大地测量重点实验室开放基金(L06-01) 重庆市自然科学基金(CSTC-2007BB2193) 重庆市自然科学基金(CSTC-2006BB0168) 广西青年自然科学基金(9912008)
关键词 M估计 方差分量估计 多余参数 Lp估计 M-estimate the estimate of heteroscedastic variance (or variance component) nuisance Lp-estimate
  • 相关文献

参考文献6

  • 1於宗俦.测量平差基础[M].武汉:武汉测绘科技大学出版社,2001.
  • 2PJ.Huber.Robust Statistics[M].New York,Wiley 1981.
  • 3彭军还,陶本藻,黄王成,叶叔华.L_q估计的渐近方差-协方差矩阵及其特点[J].测绘学报,2004,33(4):293-298. 被引量:4
  • 4PENG Jun-huan,XIE Zhi-yin.Robustified L∞ Norm Estimate[J].Survey Review,2002,284:432-440.
  • 5PENG Jun-huan.The Asymptotic Variance-Covariance Matrix,Baarda Test and the Reliability of L1-norm estimates.[J].Journal of Geodesy,2005,78:668-682.
  • 6崔希璋,於宗俦,陶本藻,等.广义测量平差[M].武汉:武汉大学出版社,2005.

二级参考文献14

  • 1HUBER P J. Robust Statistics [M]. New York:Wiley, 1981.
  • 2CHEN Xi-ru. M-methods in Linear Model[M]. Shanghai: Shanghai Scientific and Technical Publishing House, 1995. (in Chinese)
  • 3BAHADUR R R. A Note on Quantiles in Large Samples[J]. Annals of Mathematics and Statistics, 1966,(37): 577-580.
  • 4BABU G J.Strong Representations for LAD Estimates in Linear Models [J]. Probability Theory Related Fields, 1989,83(F) :547-558.
  • 5YU Zhong-cou. The Basis of Surveying Adjustment [M]. Wuhan: Press of Wuhan Technical University of Surveying and Mapping, 2001. 93-98. (in Chinese)
  • 6CHEN Xi-ru. Introduction to Mathematics and Statistics[M]. Beijing: Science Press, 1997.452-454. (in Chinese)
  • 7SUN Hai-yan.The Uniform Mode of Error Distribution[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1995. (in Chinese)
  • 8PENG Jun-huan. Research on Non-linear M-estimates and Its Application[D]. Wuhan: Wuhan University,2003. (in chinese)
  • 9SHENG Yong-huan. The Practical Manual of Mathematics[ M]. Beijing: Science Press, 1992. 468.
  • 10YANG Y. Estimator of Covariance Matrix at Robust Estimation Based on Influence Functions [ J ].Zeitschrift fuer Vermessungswesen, 1997, 122 (4):166-174.

共引文献28

同被引文献22

  • 1於宗俦.方差——协方差分量极大似然估计的通用公式[J].测绘学报,1994,23(1):6-13. 被引量:10
  • 2王新洲,刘经南,陶本藻.稳健最优不变二次无偏估计[J].武汉测绘科技大学学报,1995,20(3):240-245. 被引量:11
  • 3刘长建,马高峰,乔书波.含有粗差或系统误差的方差分量估计[J].测绘通报,2005(10):7-8. 被引量:3
  • 4崔希璋,於宗俦,陶本藻.等.广义测量平差(新版)[M].武汉:武汉大学出版社,2005.
  • 5AMIRI-SIMKOOEI A R. Least squares Variance Component Estimation Theory and GPS Applications [D]. Delft: Delft University of Technology, 2007.
  • 6PENG Junhuan, SHI Yun, LI Shuhui,et al. MINQUE of Variance-Covariance Components in Linear Gauss-Markov Models [J]. Journal of Surveying Engineering, 2011, 137 (4) !129-139.
  • 7CROCETTO N, GATTI M, RUSSO P. Simplified Formulae for the BIQUE Estimation of Variance Components in Dis- ]unctive Observation Groups [J]. Journal of Geodesy, 2000, 74(6): 447-457.
  • 8SJOBERG L E. Non-negative Variance Component Esti mation in the Gauss Helmert Adjustment Model [ J ]. Manuscripta Geodaetica, 1984(9) : 247-280.
  • 9ESHAGH M, SJOBERG L E. The Modified Best Quadratic Unbiased Non-Negative Estimator ( MBQUNE ) of Variance Components [J]. Studia Geophysica et Geodaetica, 2008, 52(3): 305-320.
  • 10YU Zongchou. A Universal Formula of Maximum Likelihood Estimation of Variance-eovariance Components [ J ]. Journal of Geodesy, 1996, 70(4): 233-240.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部