期刊文献+

多涡卷混沌吸引子同步的双控制器 被引量:5

Double-controller of synchronizing chaotic systems with multi-scroll attractors
下载PDF
导出
摘要 针对驱动系统与响应系统不同混沌状态的同步问题,提出了一种双控制器控制方法。依据Lyapunov稳定性理论,对两系统同步误差的稳定性进行了分析和证明,并对5涡卷与3涡卷、5涡卷与非混沌态Chua电路之间的同步进行了计算机数值仿真实验。结果表明,不受初始条件和参数差的限制,只要驱动系统是混沌状态,无论响应系统是混沌态还是非混沌态,该控制器都能有效地控制同步,并误差图和时序图显示出了双控制器可在2s内控制不同涡卷吸引子系统同步,在5s内能控制非混沌态的系统与混沌系统同步。 To solve synchronization problems of different chaotic states in driving system and driven system, a double-controller control method is presented. According to Lyapunov stability theory, the synchronization error of two chaotic systems was analyzed and proved to be asymptotically stabile, and the synchronization between 5-scroll and 3-scroll Chua's circuits, and 5-scroll and non-chaos Chua's circuits were studied by computer simulation experiments. The experimental results demonstrate that the double-controller can effectively control the synchronization of two systems if only the driving system is chaos state without the limit of initial conditions and parameter errors. At the same time errors vs. time and time evolution of synchronization process show that the double controller can synchronize between different scroll attractor circuits within 2 seconds, and between chaos circuit and non-chaos circuit within 5 seconds.
作者 陈红
出处 《电机与控制学报》 EI CSCD 北大核心 2008年第2期190-194,共5页 Electric Machines and Control
基金 国家自然科学基金(60672011)
关键词 双控制器 CHUA电路 多涡卷吸引子 同步 double-controller Chua's circuit multi-scroll attractor synchronization
  • 相关文献

参考文献13

  • 1MATSUMOTO T, CHUA L O, KOMURO M. The double scroll [J]. IEEE Trans Circuits Syst (Part-Ⅰ), 1985, 32(8):798 - 817.
  • 2LU Jinhu, CHEN Guanrong. Generating multiscroll chaotic attractors: theories, methods and applications[ J ]. Int. J. Bifurc. Chaos, 2006,16(4): 775 -858.
  • 3SUYKENS J A K, VANDEWALLE J. Generation of n double scrolls ( n =1,2,3 ,4... ) [ J ] . IEEE Trans Circuits Syst (Part-Ⅰ), 1993, 40( 11 ) :861 -867.
  • 4YALCIN M E, SUYKENS J A K, VANDEWALLE J. Experimental confirmation of 3-and 5-scroll attractors from a generalized Chua' s circuit [ J ]. IEEE Trans Circuits Syst ( Part-Ⅰ), 2000, 47 (3) :425 -429.
  • 5SUYKENS J A K, HUANG A, Chua L O. A family of n-scroll attractors from a generalized Chua' s circuit [ J ]. Archiv Fur Elektronik and Ubertragungstechnik, 1997, 51 (3) :131 - 138.
  • 6禹思敏,丘水生,林清华.多涡卷混沌吸引子研究的新结果[J].中国科学(E辑),2003,33(4):365-374. 被引量:21
  • 7王光义,丘水生,李志忠.多涡卷超混沌电路及其耦合同步的仿真与实验研究[J].电路与系统学报,2004,9(3):50-52. 被引量:6
  • 8禹思敏,丘水生.N-涡卷超混沌吸引子产生与同步的研究[J].电子学报,2004,32(5):814-818. 被引量:14
  • 9CHUA L O, ITOH M, KPEAREV L, et al. Chaos synchronization in Chua's circuit[J]. J. of Circuits and Computers, 1993, 3 ( 1 ) :93 - 108.
  • 10GHUA L O, KOEAREV L, EGKERT K, et al. Experimental chaos synchronization in Ghua's circuit[ J ]. Int. J. of Bifurcation and Chaos, 1992, 2(3) :705 -708.

二级参考文献42

  • 1Tang K S, Man K F, Zhong G Q. Some new circuit design for chaosgeneration [M].Hong Kong: World Scientific, Series B.2002,11:171-189.
  • 2Kapitaniak Tomasz, Chua Leon O, Zhong Guo-Qun. Experimental hyper-chaos in coupled Chua's circuits [J]. IEEE Trans. CAS- I, 1994, 41(7): 499-503.
  • 3Silva C P. Shil'nikvo's theorem-A tutorial [J]. IEEE Trans Circuits and Systems (part I), 1993, 40(10): 675-682.
  • 4Qiu S S. A cell model of chaotic attractor [A]. Proc IEEE ISCAS'97 [C]. Hong Kong, 1997, Piscatway: IEEE CAS Society, 1997, 1033-1036.
  • 5Qiu S S. Study of existence and structure of chaotic attractors [A]. Proc Int. Symp. On Nonlinear Theory and Its Aplications [C]. Xi'an, 2002, 783-786.
  • 6Vira M de Sousa, Lichtenberg A J, Lieberman M A. Self-synchronization of many coupled oscillators [J]. Phys Rev., 1992, A46: 7359-7362.
  • 7Roy P K, et al. Experimental observation phenomena in coupled nonidentical Chua's oscillators [J]. Chaos, 2003, 13 (1):342-355.
  • 8Matsumoto T, Chua L O, Komuro M. The double scroll. IEEE Trans Circuits Syst (part- Ⅰ), 1985, 32(8): 798 - 817.
  • 9Zhong G Q, Ayrom F. Experimental confirmation of chaos from Chua's circuit. Int J Circuit Theory Appl, 1985, 13:93 - 98.
  • 10Chua L O, Komuro M, Matsumoto T. The double scroll family. IEEE Trims Circuits Syst (part- Ⅰ), 1986, 33(11): 1073 - 1118.

共引文献75

同被引文献51

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部