期刊文献+

基于滑转率的六轮纵列式月球车驱动控制研究 被引量:4

Study on Driving Control Method of a Six-Wheeled Tandem Lunar Rover Based on Slip Ratio
下载PDF
导出
摘要 基于车轮滑转率和车轮地面力学,研究了月球车在松软月面行驶时的车轮过度下陷问题.将月球车车轮下陷和车轮—土壤作用力表达为车轮滑转率的函数,结合车辆地面力学理论并考虑纵列式车轮多通过性土壤参数的修正,建立了月球车的动力学模型.判断车轮是否发生过度下陷的标准为土壤所提供给驱动轮的土壤推力能否克服土壤对车轮的阻力.利用建立的动力学模型,计算出能够保证车轮不会过度下陷的期望滑转率.考虑到月球车动力学系统的非线性和不确定性,设计了以车轮滑转率为状态变量的滑模驱动控制器.仿真结果表明,采用该控制器可以较快地跟踪期望滑转率,避免车轮的过度滑转下陷,保证月球车能够在软质路面上正常行驶. Based on slip ratio and terramechanics of the wheels, this paper investigates the problem of excessive sinkage of lunar rover wheel on the loose lunar soil. The sinkage of lunar rover wheel and the wheel-soil interaction forces are modeled as a function of wheel slip ratio. Dynamical model of the lunar rover is established, which incorporates the terramechanics theory and calibrats the parameters of soil by the theory of multi-pass performance of tandem wheels. Then regarding whether the effective traction force supported by the loose soil is larger than the wheel resistance, excessive sinkage of lunar rover wheel is determined. And then the desired value of wheel slip ratio is calculated by this dynamical model , which can avoid excessive sinkage of lunar rover wheel. Finally, considering the nonlinearity and uncertainty of lunar rover systems, the sliding mode controller is designed in terms of wheel slip ratio. Simulation results show that the controller effectively keeps the slip ratio of the driving wheel tracking the desired value and avoids the excessive spin and sinkage of the driving wheel, therefore guarantees the normal operation of the lunar rover on soft soil.
出处 《机器人》 EI CSCD 北大核心 2008年第2期117-122,共6页 Robot
基金 中国科学院方向性预先研究资助项目(A050105)
关键词 月球车 车轮下陷 滑转率 软路面 滑模控制 lunar rover wheel sinkage slip ratio soft road condition sliding mode control
  • 相关文献

参考文献11

  • 1National Aeronautics and Space Administration (NASA). NASA Space Vehicle Design Criteria ( Environment), Lunar Surface Models[R]. USA: National Aeronautics and Space Administration, 1969.
  • 2Bekker M G. Theory of Land Locomotion [M]. Ann Arbor, USA: University of Michigan Press, 1956.
  • 3Iagnemma K, Shibly H, Dubowsky S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration rovers [ J ]. Journal of Terramechanics, 2005,42:1 -13.
  • 4Yoshida K, Hamano H. Motion dynamics of a rover with slip-based tractio, model [ A ]. Proceeding of the 2002 IEEE International Conference on Robotics & Automation [ C ]. Piscataway, NJ,USA: IEEE, 2002. 3155 -3160.
  • 5王佐伟 吴宏鑫 梁斌 程代展 胡翔勇.月球探测车动力学建模与协调驱动控制[A].程代展, 胡翔勇.第二十二届中国控制会议论文集[C].武汉: 武汉理工大学出版社,2003.554-558.
  • 6Robert B, Winnie L, Tim B. Experimental and simulation results of whee-soil interaction for planetary rovers [ A]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems [ C ]. Piscataway, N J, USA :IEEE, 2005. 586 - 591.
  • 7Wong J Y. Theory o.f Ground Vehicles (Third Edition) [ M]. New York: John Wiley & Sons, 2001.
  • 8王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测[J].农业工程学报,1995,11(4):33-38. 被引量:5
  • 9S]otine J E.应用非线性控制(英文版)[M].北京:机械工业出版社,2004.
  • 10Qian M. Sliding Mode Controller Design for ABS System [ D ]. Blaeksburg, USA: Virginia Polytechnic Institute and State University, 1997.

二级参考文献4

  • 1王庆年,博士学位论文,1987年
  • 2庄继德,汽车地面力学,1980年
  • 3庄继德,汽车通过性,1980年
  • 4贝克 M G,地面.车辆系统导论,1978年

共引文献5

同被引文献36

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部