期刊文献+

效用函数的存在性

The Existence of Utility Function
下载PDF
导出
摘要 运用Riemann几何的一些基本知识证明效用函数的存在性,用数学式表示了效用函数的2个特征:效用是随着单个商品数量递增而增长的,且单个商品的边际效用是递减的同时,得出了对于效用函数,商品组合X和商品组合Y产生的效用之和大于商品组合X+Y产生的效用. The existence of utility function is proved by using the basic knowledge of Riemannian geometry,the two characteristics of utility function are expressed by mathematical formulas, the characteristics are that, the utiltity is rising with the rising quantity of the single commodity, and the boundary utility of single commodity is reducing. Then, the result is got, for the utility function, the sum utility of the combination of commdity X and the combimation of commodity Y is more than the combination of commodity X and Y.
作者 张炳侠
出处 《华北水利水电学院学报》 2008年第1期104-105,共2页 North China Institute of Water Conservancy and Hydroelectric Power
基金 海南省自然科学基金项目(80601) 海南省教育厅项目(Ujkj200710)
关键词 效用函数 边际效用 Riemann几何 utility function boundary utility Riemannian geometry
  • 相关文献

参考文献4

  • 1DEBREU G. Representation of a Preference Ordering by a Numerical Function in Decision Processes[ M ]. NewYork: Wiley, 159 - 165.
  • 2王则柯.经济学拓扑方法[M].北京:北京大学出版社,2001.
  • 3SPIVAK M. A Comprehensive Introduction to Differential Geometry [ M ]. Boston : Boston Publish or Perish, 1975.
  • 4WARNER F W. Foundations of Differentiable Manifolds and Lie Groups[ M ]. New York:Springer-Verlag, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部