期刊文献+

关于广义Hardy-Hilbert积分不等式及其应用 被引量:2

On a generalized Hardy-HUbert's integral inequality and its applications
下载PDF
导出
摘要 通过引入参数λ(1-q/p<λ≤2,p≥q>1)及两个非负且在(0,+∞)递增的可微函数u(x)和v(x)建立了一种广义带权的Hardy-Hilbert积分不等式.特别,当p=2时,得到经典Hilbert积分不等式的各种推广.作为应用,当u(x)和v(x)是幂函数、指数函数和对数函数时,建立了若干重要不等式. It is shown that a Generalized Hardy-Hilbert integral inequality with weights can be established by introducing a parameter A (1 - q/p 〈λ≤ 2) and two nonnegative and increasing functions u (x) and v (x) which are differentiable in interval (0, + ∞). In particular, for case p = 2, the various new extensions of the classical Hilbert's integral inequality are obtained. As applications, some important inequalities are built, when u (x) and v (x) are power functions, exponent function and logarithm function.
作者 龚焰 高明哲
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第1期125-132,共8页 Pure and Applied Mathematics
基金 湖南省教育厅资助科研项目(06C657)
关键词 广义Hardy-Hilbert积分不等式 HILBERT型积分不等式 权函数 Β函数 Γ函数 generalized Hardy-Hilbert's integral inequality, Hflbert's type integral inequality, weight function,beta function, gamma function
  • 相关文献

参考文献8

  • 1Hardy G H. Littlewood J E, Polya G. Inequalities [M]. Cambridge: Cambridge Univ. Press, 1952.
  • 2Yang Bicheng , Debnath L.On the extended Hardy-Hilbert's inequality [J]. J. Math. Anal.Appl., 2002, 272 (1): 187-199.
  • 3杨必成.A Note on HilbertsIntegral Inequalities[J].Chinese Quarterly Journal of Mathematics,1998,13(4):83-86. 被引量:50
  • 4Yang Bicheng. On Hilbert's Integral Inequality [J]. J. Math. Anal. Appl., 1998, 220 (2): 778-785.
  • 5Kuang Jichang. On new extensions of hilbert's integral inequality [J]. J. Math. Anal. Appl., 1999, 235 (2): 608-614.
  • 6Yang Bicheng. On a general Hardy-Hilbert's inequality with a best value [J]. Chinese Ann. Math.(Ser.A ), 2000, 21(4): 401-408.
  • 7王竹溪,郭敦仁.特殊函数引论[M].北京:科学出版社,1979.
  • 8Yang Bicheng. On a new inequality similar to Hardy-Hilbert's inequality [J]. Mathematical Inequality and Applications, Croatia, 2003, 6 (1): 37-44.

二级参考文献5

  • 1杨必成,高明哲.关于Hardy-Hilbert不等式中的一个最佳常数[J].数学进展,1997,26(2):159-164. 被引量:57
  • 2Gao Mingzhe,Proceedings of the American Mathematical Society,1998年,126卷,3期,751页
  • 3杨必成,J Math Study,1996年,29卷,2期,64页
  • 4胡克,Chin Ann Math B,1992年,13卷,1期,35页
  • 5徐利治,数学季刊,1991年,6卷,1期,75页

共引文献50

同被引文献13

  • 1胡克.关于Hilbert不等式及其应用[J].数学进展,1993,22(2):160-163. 被引量:12
  • 2杨乔顺,高明哲.Hardy-Hilbert积分不等式的一个新推广及其应用(英文)[J].纯粹数学与应用数学,2005,21(1):91-98. 被引量:3
  • 3高明哲,徐利治.A Survey of Various Refinements and Generalizations of Hilbert's Inequalities[J].Journal of Mathematical Research and Exposition,2005,25(2):227-243. 被引量:8
  • 4《实用积分表》编委会.实用积分表[M].合肥:中国科学技术大学出版社,2006:75-76.
  • 5Hardy G H, Littiewood J E,Polya G. Inequalities [M]. Cambridge: Cambridge Univ. Press, 1952.
  • 6匡继吕.常用不等式[M].3版.济南:山东科学技术出版社,2004.
  • 7Hardy G H,Littlewood J E,Polya G.Inequalities[M].Cambridge:Cambridge Univ.Press,1952.
  • 8Hsu L C,Wang Y J.A refinement of Hilbert's double series theorem[J].J.Math.Res.Exp.,1991,11(1):143-144.
  • 9Kuang Jichang.On new extensions of Hilbert's integral inequality[J].J.Math.Anal.Appl.,1999,235(2):608-614.
  • 10He Leping,Gao Mingzhe,Zhou Yu.On new extensions of Hilbert's integral inequality[J].International Journal of Mathematics and Mathematical Science,2008.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部