期刊文献+

椭圆曲线密码的快速算法 被引量:1

Efficient arithmetic on elliptic curves cryptograph
下载PDF
导出
摘要 80年代,椭圆曲线理论被引入数据加密领域,形成了一种新的公开密钥体制即椭圆曲线密码体制(ECC).该体制中,最耗时的运算是倍点运算也就是椭圆曲线上的点与一个整数的乘法运算.因此倍点运算的快速计算是椭圆曲线密码快速实现的关键.本文提出一种计算kP新的算法,使效率提高38%以上. In 1980s, the theory of elliptic curve was introduced into the field of data cryptography, which formed a new public key cryptograph system, that is elliptic curves cryptography(ECC).The most time consuming operation is multiplication of a point on the elliptic curve with an integer in the system. Therefore, the key of the efficient achievement elliptic curve cryptography is the efficient computing of multiplying points. In the paper, introduce a new computing kP algorithm, and efficiency was improved 38%.
作者 张静 辛小龙
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第1期133-135,208,共4页 Pure and Applied Mathematics
基金 陕西省自然科学基金(2004A11) 陕西省教育厅专项科研基金(03JK058)
关键词 椭圆曲线 倍点 KOBLITZ曲线 elliptic curve, multiplying points, Koblitz curve
  • 相关文献

参考文献5

  • 1Neal Koblitz, Alfred Menezes, Scott Vanstone. The state of elliptic curve cryptography[J]. Designs, codes and cryptography, 2000,19:173-193.
  • 2李湛.一种改进的椭圆曲线密码实现算法[J].电子科技,2004,17(7):31-33. 被引量:13
  • 3Volker Muller. Fast multiplication on elliptic curves over small fields of characteristic two[J]. Journal of cryptology,1998,11:219-234.
  • 4J.Lopez,R.Dahab. Fast multiplication on elliptic curves overGF(2^m)without precomputation[J]. Crypto graphic Hardware and Embedded System,Lecture note in computer science, 1999,1717:316-327.
  • 5Neal Koblitz. CM curves with good cryptographic propertices[J]. Advance in Cryptology-CRYPTO'91,Lecture note in computer science,Springer-Verlag ,1992,576,279-287.

共引文献12

同被引文献8

  • 1李湛.一种改进的椭圆曲线密码实现算法[J].电子科技,2004,17(7):31-33. 被引量:13
  • 2Hankerson D, Hernanclez J L, Menezes A. Software Implementation of Elliptic Curve Cryptography over Binary Fields [ C]//Proeeedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2000 : 1-24.
  • 3Lopez J, Dahab R. Improved Algorithms for Elliptic Curve Arithmetic in GF(2^n) [ C ]//Selected Areas in Cyrptography- SAC'98 LCNS 1556. Berlin: Springer, 1999: 201-212.
  • 4Solinas J A. Efficient Arithmetic on Koblitz Curves [J]. Designs, Codes, and Cyrptography, 2000, 19(2/3): 195-249.
  • 5Koblitz N. Elliptic Curve Cryptosystems [ J]. Mathematics of Computation, 1987, 48 (177) : 203-209.
  • 6Koblitz N. CM Curves with Good Cryptographic Properties [ C]//Crypto'91. London: Springer-Verlag, 1992: 279-287.
  • 7Guajardjo J, Paar C. Efficient Algorithms for Elliptic Curve Cryptosystems [ C ]//Advances in Cryptology, Proceedings of CRYPTO' 97. London: Springer-Verlag, 1997 : 342-356.
  • 8Lopez J, Dahab R. Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation: Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer Science [ M ]. Berlin: Springer, 1999.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部