期刊文献+

时滞Hopfield神经网络的全局指数稳定性 被引量:1

Global exponential stability of Hopfield neural networks with delays
下载PDF
导出
摘要 讨论带有可变时滞的Hopfield神经网络的全局指数稳定性.在非线性激励函数满足Lipschitz条件的假设下,利用推广的Halanay不等式、Dini导数和分析技巧,建立了这类神经网络系统全局指数稳定的几个判别准则.这些判别准则仅仅依赖于系统的参数. This paper is concerned with the global stability of Hopfield neural networks with time-varying delays. Under assumption that the nonlinear stimulate fractions are Lipscliitz Continuous, by means of generalized Halanay inequalities, Dini's derivative and functional analysis techniques, several global exponential stability criteria are established, which are only dependent on the parameters of the system.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第1期179-185,共7页 Pure and Applied Mathematics
基金 广州市科技计划项目(2006j1-C0341)
关键词 HOPFIELD神经网络 Halanay不等式 可变时滞 全局指数稳定性 Hopfield neural network, Halanay's inequality, time-varying delays, globally exponential stability
  • 相关文献

参考文献10

  • 1Chua L O, Yang T.Cellular neural network: Theory[J]. IEEE Trans CAS-I, 1988,35(9): 1257-1272.
  • 2Chua L O, Yang T. Cellular neural network: Application[J]. iEEE Trans CAS-I, 1988,35(9): 1273-1290.
  • 3Goplasam K, He X. Stability in asymmetric hopfield nets with transmission delays[J]. Phys D, 1994, 76(4): 344-358.
  • 4Morita M. Associative memory with non-montone Dynamics[J]. IEEE Trans on Neural Net., 1993, 6(1): 115-126.
  • 5Liao Xiaoxin. Stability of Hopfield-type neural netwoks(Ⅰ)[J]. Science in China, 1995, 38(4): 407-418.
  • 6Liao Xiaoxin, Liao Yang. Stability of Hopfield-type neural netwoks(Ⅱ)[J]. Science in China, 1997, 40(8): 813-816.
  • 7曹进德,林怡平.一类时滞神经网络模型的稳定性[J].应用数学和力学,1999,20(8):851-855. 被引量:24
  • 8钟守铭.具有时滞的细胞神经网络的稳定性[J].电子学报,1997,25(2):125-127. 被引量:14
  • 9曹进德,周冬明.时延细胞神经网络的全局稳定性分析[J].生物数学学报,1999,14(1):65-71. 被引量:13
  • 10夏道行,吴卓人,严绍宗.实变函数与泛函分析[M].北京:高等教育出版社,1986.

二级参考文献17

共引文献43

同被引文献11

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letter, 1990,64(8):821-824.
  • 2Carroll T L, Pecora L M. Synchronization chaotic circuits[J]. IEEE Transactions on Circuits and Systems, 1991,38(4):453-456.
  • 3Yang Y Q, Cao J D. Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects[J]. Physica A, 2007,386:492-502.
  • 4Yau H T, Yan J J. Chaos synchronization of different chaotic systems subjected to input nonlinearity[J]. Applied Mathematics and Computation, 2008,197:775-788.
  • 5Zhang Q J, Lu J A. Chaos synchronization of a new chaotic system via nonlinear control[J]. Chaos, Solitons and Fractals, 2008, 37:175-179.
  • 6Yau H T, Chen C L. Chaos control of Lorenz systems using adaptive controller with input saturation[J]. Chaos, Solitons and Fractals, 2007,34:1567-1574.
  • 7Zhou S B, Li H, Zhu Z Z. Chaos control and synchronization in a fractional neuron network system[J]. Chaos, Solitons and Fractals, 2008,36:973-984.
  • 8Liu T, Dimirovski G M, Zhao J. Exponential synchronization of complex delayed dynamical networks with general topology[J]. Physica A, 2008,387:643-652.
  • 9Yu W, Cao J D. Synchronization control of stochastic delayed neural networks[J]. Physica A, 2007,373:252- 260.
  • 10Li T, Fei S M, Zhang K J. Synchronization control of recurrent neural networks with distributed delays[J]. Physica A, 2008,387:982-996.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部