摘要
考虑带边值条件y(a)=0,y(b)=sum from i=1 to ∞ (aiy(ζi))的二阶非线性微分方程y″(t)=f(t,y(t),y′(t))+e(t),其中f满足L2-Carathe'odory条件.运用压缩映象原理在L2(a,b)空间中研究问题解的存在唯一性结果.
In this paper, the author discusses second order nonlinear differential equation as follows.y(a) = 0,y(b) =∞∑i=1 aiy(ξi) with boundary value problem y″(t)=f(t,y(t),y′(t))+e(t) ,where L^2 - satisfies Caratheodory conditions. Contraction mapping principle is employed to study the existence and uniqueness of this problem.
出处
《甘肃联合大学学报(自然科学版)》
2008年第2期17-19,29,共4页
Journal of Gansu Lianhe University :Natural Sciences
关键词
无穷多点边值问题
压缩映象原理
最优结果
point boundary value problem
contraction mapping principle
optimum result