期刊文献+

二阶非线性边值问题解的存在唯一性

Existence and Uniqueness of Solutions for Point Boundary Value Problem
下载PDF
导出
摘要 考虑带边值条件y(a)=0,y(b)=sum from i=1 to ∞ (aiy(ζi))的二阶非线性微分方程y″(t)=f(t,y(t),y′(t))+e(t),其中f满足L2-Carathe'odory条件.运用压缩映象原理在L2(a,b)空间中研究问题解的存在唯一性结果. In this paper, the author discusses second order nonlinear differential equation as follows.y(a) = 0,y(b) =∞∑i=1 aiy(ξi) with boundary value problem y″(t)=f(t,y(t),y′(t))+e(t) ,where L^2 - satisfies Caratheodory conditions. Contraction mapping principle is employed to study the existence and uniqueness of this problem.
作者 金立芸
出处 《甘肃联合大学学报(自然科学版)》 2008年第2期17-19,29,共4页 Journal of Gansu Lianhe University :Natural Sciences
关键词 无穷多点边值问题 压缩映象原理 最优结果 point boundary value problem contraction mapping principle optimum result
  • 相关文献

参考文献5

  • 1马如云,白定勇.二阶非线性边值问题解的存在唯一性定理[J].纯粹数学与应用数学,1998,14(2):61-64. 被引量:5
  • 2[2]ANTONION T.An existence theorem for a class of BVP without restrictiona of the Bernstein-Naguno type[J].Math Anal Appl,1993,175:25-32.
  • 3[3]PANDEY R K,VERMA A K.Existence-uniqueness result for a class of singular boundary value problems-Ⅱ[J].Math Anal Appl,2008.338:1387-1396.
  • 4[4]BAILY P B,SHAMPINE L F,WALTMAN P E.Nonlinear two point boundary value problems[M].New York:academic press,1968.
  • 5[5]AN Yu--lian.Existence of solutions for a three-point boundary value problem at resonance[J].Nonlineaf Analysis,2006,65:1633-1643.

二级参考文献6

  • 1P. B. Baily, L. F. Shampine & Waltman P. E. Nonlinear Two Point Boundary Value Problems, Academic Press ,New York (1968).
  • 2L. Collatz, The Numerical Treatment of Differential Equations, 3rd ed, Springer, Berlin (1960).
  • 3W. J. Coles and Sherman, Two-point problems for nonlinear second order ordinary differential equations.513 ,Math. Res. Center,Univ. of Wisconsin, Madison, Wisconsin (1964).
  • 4CH. Fabry and P. Habets, The Picard boundary value problem for nonlinear second order vector difterential equations. J. Differential Equation. 42(1981),186-198.
  • 5A. Granas, R. Guenther, and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mountain J.math.10(1979),35-58.
  • 6Antonion Tineo, An Existence Theorem for a class of BVP without Restrictions of the Bernstein-Nagumo Type, J.Math. Anal. and Appl. 175(1993),25-32.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部