期刊文献+

基于小波神经网络的结晶器漏钢预报技术研究 被引量:1

Wavelet Neural Network Based Recognition and Simulation for Wave Pattern of Mould Breakout
下载PDF
导出
摘要 介绍了预报粘结性漏钢的基本方法,并对结晶器热电偶测得的大量温度数据进行预处理,再利用小波神经网络技术对经过预处理的检测数据进行训练,优化神经网络系统的结构和参数,识别出具有漏钢征兆的波形,提高了预报系统的精度和快速性;给出了用MATLAB实现的网络训练和测试的仿真结果,同时用VC开发了能识别结晶器内单偶、横向、纵向漏钢征兆温度波形的仿真系统。 The method of forecasting mould breakout is introduced.Then,the large data which measured by thermocouple technique are pretreated.Then these large data can be trained by wavelet neural network method in this paper.The results are employed to optimize the neural network structure and parameters.The wavelet neural network which has been trained can recognize the dynamic wave pattern of mould breakout.The speed and curacy of breakout prediction system are improved.Finally this paper giving the simulation results of training and testing the network using MATLAB.Meanwhile I developed the simulation system which can identify the wave pattern of temperature which be measured by single thermocouple,horizontal thermocouple net,and vertical thermocouple net with Visual C++.
出处 《计算机测量与控制》 CSCD 2008年第3期407-410,426,共5页 Computer Measurement &Control
关键词 小波神经网络 漏钢预报 数据预处理 仿真系统 wavelet neural network breakout prediction data processing simulation system
  • 相关文献

参考文献10

二级参考文献22

  • 1吕常魁,姜澄宇,王宁生.一种支持向量聚类的快速算法[J].华南理工大学学报(自然科学版),2005,33(1):6-9. 被引量:11
  • 2张惠民,张跃萍.连铸粘附性漏钢预报装置工作原理及应用分析[J].冶金自动化,1993,17(6):10-14. 被引量:9
  • 3郭戈.连铸过程建模与控制方法的研究:博士学位论文[M].沈阳:东北大学,1998..
  • 4熊毅钢.板坯连铸[M].北京:冶金工业出版社,1998..
  • 5[1]Tanaka T,Endo H,Kamada N,et al.Trouble Forecasting System by Multi-neural Network on Continuous Casting Process of Steel Production.Artificial Neural Network,1991,835 ~ 840
  • 6Cristianini N,Sch? lkopf B.Support vector machines and kernel methods:The new generation of learning machines[J].AI Magazine,2002,23 (3):31 -41.
  • 7Muller K R,Mika S,Ratsch G.An introduction to kernel based learning algorithms[J].IEEE Transactionson Neural Networks,2001,12 (2):181-201.
  • 8Burges C J.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 9Sch? lkopf B,Platt J C,Taylor J,et al.Estimating the support of a high-dimensional distribution[R].Microsoft Research Corporation Technical Report MSR-TR-99-87,1999.
  • 10Hur A B,Horn D,Siegelmann H T,et al.A support vector clustering method[A].International Conference on Pattern Recognition[C].2000,(2):724-727.

共引文献31

同被引文献12

  • 1刘旭东,朱苗勇,程乃良.板坯连铸结晶器热行为研究[J].金属学报,2006,42(10):1081-1086. 被引量:15
  • 2Gilles H L. Breakout protection by automatic mold heat removal control [ C]. The 2nd Process Technology Conference-Continuous Casting of Steel. Chicago, 1981, 2:205-212.
  • 3Itovama S, Yamanaka H, Tanaka S, et al. Prediction and prevention system for sticking type breakout in continuous casting [C ]. Steelmaking Conf Proc Toronoto: A Publication of the Iron and Steel Society. Toronoto, 1988, 97: 54-58.
  • 4Bcllomo Metal. Ncoral networks utilization for breakout monitoring [ C]. Stcehnaking Conf Proc. Nashville, 1995: 345-350.
  • 5Gongling Luo. A neural network-based breakout prediction system for continuous slab casting[C]. The 2nd Int Conf on Continuous Casting. Wuhan, 2007: 364-368.
  • 6Ventresca Mario, Tizhoosh H R. Improving the convergence of back propagation by opposite transfer functions[J]. IEEE Int Joint Conf on Neural Network Proc, 2006, 1(10): 4777-4784.
  • 7Wang X G, Tang Z, Tamura H, et al. An improved back-propagation algorithm to avoid the local minima problem[J]. Neurocomputing, 2004, 56(1) : 455-460.
  • 8李文兵,田颖,罗公亮.神经元网络技术在连铸漏钢预报中的应用[J].冶金自动化,1998,22(3):31-35. 被引量:8
  • 9胡志刚,毕学工,陈崇峰.板坯连铸漏钢预报神经元网络专家系统的研究[J].武汉冶金科技大学学报,1999,22(3):228-232. 被引量:5
  • 10王唯一,荣亦诚,龚幼民,耿海,王成虎,傅正权.连铸漏钢诊断预报技术的研究[J].机电一体化,2000,6(4):60-65. 被引量:8

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部