期刊文献+

基于自适应谱段分组的超光谱图像压缩算法 被引量:1

Hyperspectral imagery compression algorithm based on adaptive band regrouping
下载PDF
导出
摘要 针对庞大的超光谱数据与有限的卫星信道容量间存在的巨大矛盾,提出了一种新的基于自适应谱段分组的超光谱图像压缩算法.为了充分挖掘图像的谱间相关性,运用该算法对超光谱图像进行了预处理,通过谱段的自适应分组和预测参考帧的选取提高了压缩算法的编码性能,并结合谱间预测和位平面编码分别消除了超光谱图像的谱间和空间冗余.实验结果表明:与传统方法相比,在保证图像质量和较低计算复杂度的前提下,其压缩编码的平均峰值信噪比提高了约2.0~4.5dB. There is a big contradictory between the limited communication capacity of satellite channel and large amount hyperspectral data. A novel lossy hyperspectral image compression scheme based on adaptive band regrouping is proposed. As to exploit spectrum correlation sufficiently, the proposed method pre-processes hyperspectral image by band regrouping and reference frame selection, and decorrelates the spectrum redundancy with inter-band prediction and compresses the prediction residuals with bit-plane coding. Experiments show that the proposed approach has a good performance in quality and complexity, and the average peak signal-to-noise ratio is increased about 2.0~4.5 dB.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期77-80,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60572048)
关键词 超光谱图像 分组预测 小波变换 位平面编码 hyperspectral image regrouping prediction wavelet transform bit-plane coding
  • 相关文献

参考文献9

  • 1郭仕德,马廷,林旭东.高光谱遥感及其影像空间结构特征分析[J].测绘科学,2005,30(3):35-37. 被引量:13
  • 2杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 3Ryan M J, Arnold J F. Lossy compression of hyperspectral data using vector quantization[J]. Remote Sens Environ, 1997, 61:419-436.
  • 4Abousleman G P, Marcellin M W, Hunt B R. Compression of hyperspectral imagery using 3-D DCT and hybrid DPCM/DCT[J]. IEEE Trans on Geosci Remote Sensing, 1995, 33(1): 26-34.
  • 5Saghri J A, Tescher A G, Reagan J T. Practical transform coding of muhispectral imagery[J]. IEEE Signal Processing Magazine, 1995, 12(1): 32-43.
  • 6Yu Jian. General C means clustering model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1197-1211.
  • 7Said A, Pearlman W A. A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans on Circuits System Video Technology, 1996, 5(9) : 243-250.
  • 8吴铮,何明一.基于小波变换和分段DPCM混合编码的多光谱遥感图像压缩算法[J].电子与信息学报,2003,25(6):747-754. 被引量:13
  • 9Taubman D. High performance scalable image compression with EBCOT[J]. IEEE Trans on Image Processing, 2000, 9(7): 1158-1170.

二级参考文献26

  • 1王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 2程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1999.207-217.
  • 3[美]崔锦泰著 程正兴译.小波分析导论 第五章[M].西安:西安交通大学出版社,1995..
  • 4G. P. Abousleman, M. W. Marcellin, B. R. Hunt, Compression of hyperspectral imagery using 3-D DCT and hybrid DPCM/DCT, IEEE Trans. on Geosci. &: Remote Sensing, 1995, 33(1),26-34.
  • 5J. Wang, K. Zhang, S. Tang, Spectral and spatial decorrelation of Landsat-TM data for lossless compression, IEEE Trans. on Geosci. & Remote Sensing, 1995, 33(5), 1277-1285.
  • 6N. D. Memon, K. Sayood, S. S. Magliveras, Lossless compression of multispectral image data,IEEE Trans. on Geosci. & Remote Sensing, 1994, 32(2), 282-289.
  • 7A. Said, W. A. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. on Circuits and Syst. for Video Technol, 1996, 6(3), 243-249.
  • 8浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报,1997,1(2):115-123. 被引量:60
  • 9Peng Gong, Ruilang Pu, and Bin Yu. Conifer Species Recognition: An Exploratory Analysis of In Situ HyperspectralData [J]. Remote Sens. Environ, 1997, 62: 189-200.
  • 10Freek van der Meer and Wim Bakker. Cross Correlo gram Spectral Matching: Application to Surface Mineralogical Mapping by Using AVIRIS Data from Cuprite, Nevada [ J ]. Remote Sens. Environ,1997, 61: 371-382.

共引文献30

同被引文献89

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部