期刊文献+

A Novel Face Recognition Algorithm for Distinguishing Faces with Various Angles 被引量:3

A Novel Face Recognition Algorithm for Distinguishing Faces with Various Angles
下载PDF
导出
摘要 In order to distinguish faces of various angles during face recognition, an algorithm of the combination of approximate dynamic programming (ADP) called action dependent heuristic dynamic programming (ADHDP) and particle swarm optimization (PSO) is presented. ADP is used for dynamically changing the values of the PSO parameters. During the process of face recognition, the discrete cosine transformation (DCT) is first introduced to reduce negative effects. Then, Karhunen-Loeve (K-L) transformation can be used to compress images and decrease data dimensions. According to principal component analysis (PCA), the main parts of vectors are extracted for data representation. Finally, radial basis function (RBF) neural network is trained to recognize various faces. The training of RBF neural network is exploited by ADP-PSO. In terms of ORL Face Database, the experimental result gives a clear view of its accurate efficiency. In order to distinguish faces of various angles during face recognition, an algorithm of the combination of approximate dynamic programming (ADP) called action dependent heuristic dynamic programming (ADHDP) and particle swarm optimization (PSO) is presented. ADP is used for dynamically changing the values of the PSO parameters. During the process of face recognition, the discrete cosine transformation (DCT) is first introduced to reduce negative effects. Then, Karhunen-Loeve (K-L) transformation can be used to compress images and decrease data dimensions. According to principal component analysis (PCA), the main parts of vectors are extracted for data representation. Finally, radial basis function (RBF) neural network is trained to recognize various faces. The training of RBF neural network is exploited by ADP-PSO. In terms of ORL Face Database, the experimental result gives a clear view of its accurate efficiency.
作者 Yong-Zhong Lu
出处 《International Journal of Automation and computing》 EI 2008年第2期193-197,共5页 国际自动化与计算杂志(英文版)
基金 This work was supported by Natural Science Foundation of Huazhong University of Science and Technology of PRC(No.2007Q006B).
关键词 Face recognition approximate dynamic programming (ADP) particle swarm optimization (PSO) Face recognition; approximate dynamic programming (ADP); particle swarm optimization (PSO)
  • 相关文献

参考文献1

二级参考文献9

  • 1Pentland A, Choudbury T. Face recognition for smart environ-ment. Computer, 2000, 33(2):50~55.
  • 2Chellappa R, Wilson C L, Sirohey S. Human and machine rec-ognition of faces: A survey. Proceedings of the IEEE, 1995, 83(5) :705~739.
  • 3Zabrodsky H, Peleg S, Avnir D. Symmetry as a continuous fea-ture. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 1995, 17(12):1154~1166.
  • 4Reisfeld D, Yeshurun Y. Robust detection of facial features by.generalized symmetry. In: Proceedings of the 1 lth IAPR Inter-national Conference on Computer Vision and Applications,1992, 1(A):117~120.
  • 5Kirby M, Sirovich L. Application of the Karhunen-Lo~ve proce-dure for the characterization of human faces. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1990, 12 ( 1 ) : 103~108.
  • 6Etemad K, Chellappa R. Face recognition using discriminanteigenvector. In: Proceedings of IEEE International Conferenceon Acoustics, Speech, and Signal Processing, 1996, (4):2148.~2151.
  • 7Turk M, Pentland A. Eigenface for recognition. Journal of Cog-nitive Neuroscience, 1991, 3 ( 1 ) : 72 ~ 86.
  • 8Moghaddam B, Pentland A. Probabilistic visual learning for ob-ject representation. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1997, 19(7):696~710.
  • 9Phillips P J, Weehsler H, Huang J, Rauss P. The FERET da-tabase and evaluation proeedure for faee reeognition algorithms.Journal of Image and Vision Computing, 1998, 16 (5) : 295297.

共引文献34

同被引文献19

  • 1Amir Akramin Shafie,Azhar Bin Mohd Ibrahim,Muhammad Mahbubur Rashid.Smart Objects Identification System for Robotic Surveillance[J].International Journal of Automation and computing,2014,11(1):59-71. 被引量:3
  • 2Mei Xiao,Chong-Zhao Han,Lei Zhang.Moving Shadow Detection and Removal for Traffic Sequences[J].International Journal of Automation and computing,2007,4(1):38-46. 被引量:12
  • 3宗欣露,熊盛武,朱国锋.基于肤色和AdaBoost算法的彩色人脸图像检测[J].计算机应用研究,2007,24(10):178-180. 被引量:11
  • 4L. O. Chua,,L. Yang.Cellular Neural Networks: Theory[].IEEE Transactions on Circuits and Systems.1988
  • 5L. O. Chua,L. Yang.Cellular Neural Networks: Applica- tion[].IEEE Transactions on Circuits and Systems.1988
  • 6T. Roska.CNNM Users Guide, Version 5.3x[]..1994
  • 7T. Roska,L. O. Chua.The CNN Universal Machine: An Analogic Array Computer[].IEEE Transactions on Circuits Systems II: Analog and Digital Signal Processing.1993
  • 8R. C. Gonzalez,R. E. Woods,S. L. Eddins.Digital Image Processing Using MATLAB[]..2005
  • 9C. C. Lee,J. P. De Gyvez.Single-layer CNN Simulator[].Proceedings of IEEE International Symposium on Circuits and Systems.1994
  • 10V. Murugesh,K. Murugesan.Comparison of Numerical In- tegration Algorithms in Raster CNN Simulation[].Lecture Notes in Computer Science.2004

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部