期刊文献+

基于SOM网络的智能化粒子测速算法 被引量:1

Intelligentized method for particle image velocimetry based on SOM network
下载PDF
导出
摘要 提出了基于自组织映射(self-organized mapping,SOM)神经网络的粒子图像测速算法。该方法使用SOM神经网络对粒子测速技术中运动追踪方法进行了改进,并在匹配过程中根据兴趣区域的粒子密度对粒子追踪算法与粒子相关算法进行了选择处理。经SOM网络改进的测速算法首先利用相关后的结果进行网络构建,然后使用追踪技术对候选匹配点进行筛选。该算法不仅消除了粒子密度与灰度分布的敏感性,而且也降低了相关时对分析窗口尺寸的敏感。最后,使用人工合成的粒子图进行了算法验证及误差分析。结果表明:所提算法在分析精度方面有很大的提高并且具有很强的鲁棒性。 A modified particle image velocimetry (PIV) method based on Kohonen self-organized mapping (SOM) neural network is presented. In the proposed algorithm, SOM network is used to improve the motional tracking capability; the particle tracking algorithm and the particle correlation algorithm are combined to process images according to particle density. Firstly, the results of cross-correlation are used to build network. Secondly, the tracking method is used to select matching points. The new PIV algorithm based on SOM network can reduce the dependence on particle density, intensity distribution and interrogation window size. At last, synthetic particle images are tested and the errors are analyzed. The experimental results show that the modified method is a robust algorithm for measuring the movement of particles and the velocity field can be obtained with high precision.
作者 杜海 李木国
出处 《系统工程与电子技术》 CSCD 北大核心 2008年第3期565-567,共3页 Systems Engineering and Electronics
基金 国家自然科学基金(50379002)资助课题
关键词 自组织映射神经网络 粒子图像测速 相关技术 追踪技术 鲁棒性 SOM neural network particle image velocimetry correlation method particle tracking method, robustness
  • 相关文献

参考文献8

  • 1Adiran R J. Particle imaging techniques for experimental fluid mechan ics[J]. AnnualReview of Fluid Mechanics, 1991, 23: 261 - 304.
  • 2高殿荣,王益群,申功炘.DPIV技术及其在流场测量中的应用[J].液压气动与密封,2001,21(5):30-33. 被引量:18
  • 3高潮,曹英,郭永彩.PIV血流场显示测速技术[J].光电工程,2004,31(8):37-40. 被引量:6
  • 4王灿星,林建忠,山本富士夫.二维PIV图像处理算法[J].水动力学研究与进展(A辑),2001,16(4):399-404. 被引量:38
  • 5Pereira F, Stüer H, Graff E C, et al. Two-frame 3D particle tracking[J]. Meas. Sci. Technol., 2006, 17(7): 1680-1692.
  • 6Guo D, Ming X. Color clustering and learning for image segmentation based on neural networks[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 925- 936.
  • 7Yi Y C, Kuu Y Y, Applying SOM as a search mechanism for dynamic system[C]//Proceedings of the 44^th IEEE Conference on Decision and Control, Seville, SPain, 2005 . 4111 - 4116.
  • 8Okamoto K S, Nishio T, et al. Standard images for particle-image velocimetry[J]. Meas. Sci. Technol. , 2000, 11(6): 685- 691.

二级参考文献22

共引文献51

同被引文献27

  • 1浦兴国,浦世亮,袁镇福,岑可法.激光干涉气液两相流颗粒速度矢量测量的研究[J].中国电机工程学报,2004,24(11):237-240. 被引量:12
  • 2由长福,祁海鹰,徐旭常,山本富士夫.采用PTV技术研究循环流化床内气固两相流动[J].应用力学学报,2004,21(4):1-5. 被引量:10
  • 3许联锋,廖伟丽,陈刚,李建中.稀疏气泡流动的粒子跟踪测速技术研究[J].水利学报,2005,36(7):825-829. 被引量:7
  • 4许联锋.水气两相流动的数字图像测量方法及应用研究[D]西安理工大学,西安理工大学2004.
  • 5赵文峰.水平管道突扩口气固两相流特性的实验研究[D]浙江大学,浙江大学2006.
  • 6丁经纬.基于高速摄像法的流化床内颗粒运动特性研究[D]浙江大学,浙江大学2003.
  • 7Ohyama R,Takagi T,Tsukiji T,et al.Particle tracking technique and velocity measurement of visualized flow fields by means of genetic algorithm. Journal of the Visualization Soc . 1993
  • 8Ohmi K,Panday S P.Particle tracking velocimetry using the genetic algorithm. Journal of Visualization . 2009
  • 9Takagi T.Study on particle tracking velocimetry using ant colony optimization. J.Visualization Soc.Japan . 2007
  • 10Kazuo Ohmi,Achyut Sapkota,Sanjeeb Prasad Panday.Applicability of Ant Colony Optimization in particle tracking velocimetry. 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics . 2008

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部