期刊文献+

行星际结构与垂直无碰撞激波的相互作用 被引量:2

INTERACTION BETWEEN INTERPLANETARY STRUCTURE AND PERPENDICULAR COLLISIONLESS SHOCK
下载PDF
导出
摘要 应用一维混合模拟方法数值研究了两种行星际结构──反向磁场和高密度等离子团与垂直无碰撞激波的相互作用.结果表明,随着激波上游区磁场的反向,下游区磁场将逐渐改变符号,且等离子体密度和速度分别呈现较强的湍动.激波上游和下游的物理量依然满足Rankine-Hugonoit关系.当高密度的等离子体团通过垂直无碰撞激波时,部分质子被激波反射,部分质子被加速并进入下游区域.由于质子速度分布为非Maxwell分布,在激波下游也激发出较强的湍动. By using an one-dimension hybrid code, the intenation between two kinds ofinterpanemp structure-the reverse magnehc field and the plasmoid with highdensity, and perpendicular collisionless shock is studed numerically The results showthat as the magnetic field on upstream of a shock reverses the magnetic field indownstream changes its sign gradually and the stronger turbulence is formed in thedistributions of plasma density and velocity. The parameter in upstream anddownstream of the shock still satisfy the Rankine-Hugoniot relation. When theplasmoid with high plasma density passes through perpendicular collisioniess shock, apart of protons is reflected, the others are accelerated by shock and enter thedownstream. Since that the distribution of proton velocity in the downstream is innon-Maxwell distribution, the stronger turbulence is also excited.
出处 《空间科学学报》 CAS CSCD 北大核心 1997年第3期200-205,共6页 Chinese Journal of Space Science
基金 国家自然科学基金
关键词 无碰撞激波 反向磁场 等离子体团 行星际结构 Collisionless shock, Reverse magnetic field, Plasmoid, Hybrid simulation
  • 相关文献

参考文献3

二级参考文献2

  • 1涂传诒,日地空间物理学,1988年
  • 2Kan J R,J Geophys Res,1983年,88卷,6919页

共引文献5

同被引文献11

  • 1陆全明,李毅,王水.空间等离子体与垂直无碰撞激波相互作用的数值实验[J].空间科学学报,1996,16(4):287-292. 被引量:6
  • 2Margaret G et al. Introduction to Space Physics. Cambridge: Cambridge University Press, 1995
  • 3Kenneth G Powell, Philip L Roe, Timur J Linde et al. A solution-adaptive upwind scheme for ideal magnetogydrodynamics. J. Comp. Phys., 1999, 154:284-309
  • 4Necdet Aslan. MHD-A a fluctuation splitting wave model for planar magnetohydrodynamics. J. Comp.Phys., 1999, 1553:437-466
  • 5Sankaran K, Martinelli L, Jardin S C et al. A fiux-limited numerical method for solving the MHD equations to simulate propulsive plasma flows. Int. J. Numer. Meth. Eng., 2002, 53:1415-1432
  • 6Brio M, Wu C C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics.J. Comp. Phys., 75:400-422
  • 7Harton A, Engqmist B, Osher S et al. Uniformaly high order accurate essentially non-oscillatary schene Ⅲ. J. Comp. Phys., 49:231-303
  • 8Jiang Guangshan, Wu Chengchin. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comp. Phys., 1999, 150:561-594
  • 9Sigal G et al. Strong stability-preserving high-order time discretization methods. SIAM Rev., 2001,43(1):89- 112
  • 10Newbury J A, Russell C T, Gedalin M. The determination of shock ramp width using the noncoplanar magnetic field component. Geophys. Res. Lett., 1975, 1997 24:1975-1978

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部