期刊文献+

基于支持向量机多分类器的运动想象电位识别 被引量:1

Recognition of motor imagery based on support vector machine multi-classifier
下载PDF
导出
摘要 提出一种基于支持向量机多分类器的运动想象电位识别方法。首先通过neuroscan软件进行脑信号的脑地貌图分析,根据地貌图在不同任务下的脑区优势变化利用小波提取相应脑区的特定频率段信号。再通过小波包提取其能量特征,得到时域、频频域和空域相结合的特征序列。最后利用支持向量机多分类器对想象左手、右手、脚或者想象左手、脚、舌头的脑信号进行识别,并取得了较好的结果。 The method to recognize the electroencephalogram (EEG) signal of the motor imagery base on the support vector machine (SVM) multi-classifier is presented in this paper. Firstly, the physiognomy picture of EEG is obtained through neuroscan software and we get the frequency sect based on the physiognomy picture of EEG using the wavelet. Then we make use of wavelet packets to get the energy feature of EEG and form the feature sequence in time, frequency and space domain. Finally, SVM Multi-classifier is applied to classify the imaginary movements of left hand, right hand and feet as well as left hand, feet and tongue, with a high accuracy.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2008年第9期1697-1700,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家自然科学基金资助项目(60543005 60674089) 上海市重点学科研究项目(B504)~~
  • 相关文献

参考文献9

  • 1Bashashati A, Fatourechi M, Ward RK, et al. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 2007;4(2):R32-R57
  • 2Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 2007, 4(2): R1-R13
  • 3Pfurtscheller G, Neuper C, Schlogl A, et al. Separability of EEG signals recorded during fight and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 1998;6(3):316-325
  • 4Pfurtscheller G, Neuper C, Muller GR, et al. Graz-BCI: State of the Art and Clinical Applications. IEEE Trans Neural Syst Rehabil Eng 2003:11(2):177-180
  • 5Mallat S. A wavelet tour of signal processing.London, UK: Academic Press. 1998
  • 6Crisp DJ, Burges CJC.A Geometric Interpretation of v-SVM classifiers.Neural Inform Proc Syst 1999; 12:244-250
  • 7Keirn ZA,Aunon JI.A new mode of communication between man and his surroundings. IEEE Trans Biomed Eng 1990; 37(12):1209-1214
  • 8Anderson CW, Stolz EA,Shamsunder S.Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks.IEEE Trans Biomed Eng 1998,45(3):277-286
  • 9Millan del RJ,Mourino J,Franze M,et al.A local neural classifier for the recognition of EEG patterns associated to mental tasks.IEEE Trans Neural Networks 2002, 13(3):678-686

同被引文献16

  • 1Blankertz B,et al. Classifying single trial EEG: towards brain computer interfacing[J]. Advances in Neural Information Process Systems, 2002,14 : 157- 164.
  • 2Barreto G A, et al. On the classification of mental tasks:a performance comparison of neural and statistical approaches[A]. Proceeding IEEE Workshop on Machine Learning for Signal Processing[C]. 2004. 529 -538.
  • 3Palaniappan R. Brain computer interface design using band powers extracted during mental tasks[A]. Proceeding 2nd International IEEE EMBS Conference on Neural Engineering[C]. 2005. 321-324.
  • 4Craig D A,Nguyen H T,Burchey H A. Two channel EEG thought pattern classifier[A]. 28th Annual International Conference of the IEEE - Engineering - in - Medicine- and - Biology - Society[C]. 2006, 1 - 15: 3342-3345.
  • 5Obermaier B, Neuper C. Information transfer rate in a five- classes brain- computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001,9 (3) : 283 - 288.
  • 6Schlogl A,Lee F,Bischof H L. Characterization of four - class motor imagery EEG data for the BCI - competition 2005[J]. Journal of Neural Engineering, 2005, (4) : 14- 22.
  • 7刁卫锋 等.用一种小波特征的复杂手操作脑电信号模式识别.振动.测试与诊断,2006,26:123-127.
  • 8Vapnik V. The Nature of Statistieal Learning Theory. Springer - Verlarg[M]. New York: Springer Verlag, 1995.
  • 9Cristianini N, Shawe - Taylor J. An Introduction to Support Vector Machines and Other Kernel - based Learning Methods[M]. Beijing: China Machine Press, 2005.
  • 10HsuChih- Wei, LinChih- Jen. A comparison of methods for multi- class support vector machines [J]. IEEE Transactions on Neural Networks 2002,13(2): 415-425.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部