期刊文献+

Buckley-James模型与指数回归模型在生存分析中的应用比较

Comparisons of Buckley-James Model and Exponential Regression Model in Survival Analysis
下载PDF
导出
摘要 目的:比较Buckley-James模型(BJ模型)和指数回归模型在生存分析中的应用情况。方法:运用BJ模型和指数回归模型分别对137例肺癌病人进行生存分析。结果:发现BJ模型能够提供主要的预后因素,其结果与特定指数分布回归模型基本一致,使研究者能够较快的获得预后的影响因素。结论:当生存时间的分布未知时,BJ模型为显著性预后因素的获得提供了较有力的依据。 Objective: to compare with Buckley-James model (for short BJ model) and exponential regression model in survival analysis. Methods: BJ model and exponential model are employed to analyze survival data of 137 patients with lung cancer. Result: It showed that main factors affecting prognosis of those patients could be carried out and there is no difference between BJ model and exponential model. Conclusion. when distribution of survival time is unknown, BJ model can still give a strong guidance to pick out significant prognosis factors.
作者 徐英 骆福添
出处 《数理医药学杂志》 2008年第2期129-130,共2页 Journal of Mathematical Medicine
关键词 BJ模型 指数回归模型 生存分析 肺癌 BJ model exponential model survival analysis lung cancer
  • 相关文献

参考文献6

  • 1J. Buekley , I. James. Linear regression with censored data. Biometrika, 1979,66:429-436.
  • 2G. Hiller,J. S. Simonoff. A comparison of estimators for regression with a censored response variables. Biometrika, 1990, 77: 515-524.
  • 3徐天和,等.多元统计分册.人民卫生出版社,2004.
  • 4Janez Stare , et al. BJ: an S-Plus program to fit linear regression models to censored data using the Buckley-James method. Computer Methods and Programs in Biomedicine, 2001,64:45-52.
  • 5陈文,俞顺章.Cox回归模型与对数线性回归模型在生存分析中应用的比较[J].中国卫生统计,1997,14(4):16-18. 被引量:10
  • 6R. Miller, J. Halper. Regression with censored data. Biometrika, 1982,69:521-31.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部