期刊文献+

BaTiO_3陶瓷中Nb_2O_5-Zn_(0.8)Mg_(0.2)TiO_3的掺杂效应

Dopping Effects of Nb_2O_5-Zn_(0.8)Mg_(0.2)TiO_3 in BaTiO_3 Ceramics
下载PDF
导出
摘要 研究了BaTiO3-Nb2O5-Zn0.8Mg0.2TiO3系统的介电性能及微观性能。SEM和XRD分析发现,在掺杂x(Nb)=1%的BaTiO3陶瓷中,Zn0.8Mg0.2TiO3的固溶度小于4%。Nb2O5和Zn0.8Mg0.2TiO3用量均为1%时,BaTiO3陶瓷为赝立方相结构,当x(Nb)>2%时,陶瓷样品(002)和(200)衍射峰相互分开,研究表明,BaTiO3陶瓷为四方相,且随着Nb用量增加,四方率增强。此外,Nb用量增加还使BaTiO3陶瓷室温介电常数降低,而同时居里点升高。当x(Nb)=2%和x(ZMT)=1%时,在空气中于1 180℃下烧成的BaTiO3陶瓷材料的主要性能指标为:298 K时介电常数2ε98 K=2 004,介电损耗tanδ=0.84%,密度ρ=1.4×1012Ω.cm,-55^+150℃,电容量温度变化率△C/C≤±15%。 This paper investigated the micro-properties and dielectric properties of BaTiO3-Nb2O5-Zn0.8Mg0.2TiO3 system. The SEM and XRD analysis showed that the solubility of Zno.s Mg0. 2 TiO3 in BaTiO3 with 1% Nb dopant is less than 4%. With only 1% Nb doping, the sample showed pseudo-cubic structure. Nevertheless, when Nb amount exceeded 2%, the room-temperature structure of doped BaTiOa was tetragonal, as evidenced by the (002) and (200) peaks were separated from each other, and the tetragonality became stronger with Nb concentration increasing, when Zno.s Mgo.2 TiO3 amount was identical, with Nb concentration increasing, dielectric constant decreased and the Curie temperature shifted to higher temperatures. For the sample with 2% Nb and 1% ZMT, the main features of the BaTiO3 ceramics that were sintered in air atmosphere at 1 180 ℃ are: ε298K =2 004, tan δ=0.84%,ρ=1. 4×10^12Ω·cm, -55~+150℃ and ΔC/C≤15%.
出处 《压电与声光》 CSCD 北大核心 2008年第2期205-207,210,共4页 Piezoelectrics & Acoustooptics
关键词 钛酸钡 介电性能 微观性能 居里温度 钛酸镁锌 X8R barium titanate dielectric properties microstructure properties curie temperature ( Zn, Mg) TiO3 X8R
  • 相关文献

参考文献13

  • 1SATO S, NOMURA T , SATO A. Dielectric ceramic composition and electronic device [P]. United States Patent, 6226172, 1999.
  • 2JUNGYS, NAES, PAIKU, etal. A study on the phase transition and characteristics of rare earth elements doped BaTiO3[J]. Materials Research Bulletin, 2002, 37(9): 1 633-1 640.
  • 3DULLN F H ,RASED E. Phase equilibria in the system ZnO-TiO2[J]. J Am Cera Soc, 1960, 43(3) : 125- 131.
  • 4YAMAGUCHI O, MORIMI M, KAWABATA H, et al. Formation and transformation of ZnTiO3[J].J Am Cera Soc, 1987, 70(5): C97-C98.
  • 5KIM H T, NAHM S, BYUN J D, et al. Low-fired (Zn, Mg)TiO3 microwave dielectrics[J]. J Am Cera Soc, 1999, 82(12): 3 476-3 480.
  • 6CHANG Y S, CHANG Y H, CHEN I G, et al. Synthesis and characterization of zinc titanate doped with magnesium[J]. Solid State Communications, 2003, 128(5) : 203-208.
  • 7KISHI H, KOHZU N, MIZUNO Y, et al. Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3 [J]. Jpn J Appl Phys, 1999, 38 (9B): 5 452-5 456.
  • 8ARMSTRONG T R ,BUCHANAN R C. Influence of core-shell grains on the internal stress state and permittivity response of zirconia-modified barium titanate [J]. J AmCeraSoc, 1990, 73(5): 1 268-1 273.
  • 9CHAZONO H ,KISHI H. Sintering characteristics in the BaTiO3-Nb2 O5-Co3 O4 ternary system : Ⅱ, stability of so-called core-shell structure[J]. J Am Cera Soc, 2000, 83(1): 101-106.
  • 10HWANG J H, CHOI S K , HAN Y H. Dielectric properties of BaTiO3 codoped with Er2O3 and MgO [J]. Jpn J Appl Phys, 2001, 40(8): 4 952-4 955.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部